
www.manaraa.com

  
 

Walden University 
 
 
 

COLLEGE OF MANAGEMENT AND TECHNOLOGY 
 
 
 
 

This is to certify that the doctoral dissertation by 
 
 

Ajay Gawali 

 
has been found to be complete and satisfactory in all respects,  

and that any and all revisions required by  
the review committee have been made. 

 
 

Review Committee 
Dr. Raghu Korrapati, Committee Chairperson,  

Applied Management and Decision Sciences Faculty 
 

Dr. Reza Hamzaee, Committee Member,  
Applied Management and Decision Sciences Faculty 

 
Dr. Walter McCollum, University Reviewer 

Applied Management and Decision Sciences Faculty 
 
 
 
 

Chief Academic Officer 
 

Eric Riedel, Ph.D. 
 
 
 

Walden University 
2012 

 



www.manaraa.com

 

Abstract 

 

Impact of Agile Software Development Model on Software Maintainability  

by 

Ajay R. Gawali 

 

 

M.Sc. Physics, University of Pune, India, 1991 

B.Sc. Electronics, University of Pune, India, 1989   

 

 

Dissertation Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Doctor of Philosophy 

Applied Management and Decision Sciences: 

Information Systems Management 

 

 

 

Walden University 

May 2012 

  



www.manaraa.com

Impact of Agile Software Development Model on Software Maintainability  

by 

Ajay R. Gawali 

 

 

 

 

 

 

Dissertation Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Doctor of Philosophy 

Applied Management and Decision Sciences: 

Information Systems Management 

 

 

 

 

 

Walden University 

May 2012 

 



www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3508891
Copyright  2012  by ProQuest LLC.

UMI Number:  3508891



www.manaraa.com

Abstract 

Software maintenance and support costs account for up to 60% of the overall software 

life cycle cost and often burdens tightly budgeted information technology (IT) 

organizations. Agile software development approach delivers business value early, but 

implications on software maintainability are still unknown.   The purpose of this 

quantitative study was to better comprehend the impact of the Agile development 

approach on software maintainability.  The study drew on resource dependence and 

Lehman’s software evolution theories.  The research questions for the study examined (a) 

the impact of  the Agile software development model on software maintainability and its 

components- software analyzability, changeability, stability, and testability; and (b) the 

extent of the influence of the Agile approach, characterized by test-driven development, 

refactoring, continuous integration (CI) on software maintainability and its components 

in U.S.-based IT organization.  Software source code data from a specific project were 

collected from 61 software iterations of software system developed using the Agile 

model.  The quantitative study employed the analytic hierarchy process and multiple 

regression technique for data analysis.  Results of this study revealed that the test-driven 

development explained 17% of variation, whereas refactoring accounted for 11% of 

variation in software maintainability.  The CI factor was found to be statistically 

insignificant.  This study contributes to positive social change by ascertaining the impact 

of  Agile approach on software maintainability, further benefiting the Agile project 

management, Agile advocates, IT operation management, Agile practitioners, businesses 

adapting Agile development approach, and by contributing to the possible reduction in 

software maintenance efforts and cost due to improved software maintainability.  



www.manaraa.com

Dedication 

Kudos to my wonderful friends and peers at Walden University for their 

inspirational words and encouragement throughout this journey! My spirited school and 

college teachers, electronic multimeter gift from my father, wise sponsorship of my 

grandfather for 80286 based PC, friendship of Suresh Nair, Amma’s divinely hug, 

Dadaji’s addictive wisdom, Babaji’s blissful eyes, Krishna’s comforting smile, fruits of 

our vegetable garden, many known, and unknown critics are some of the greatest beads 

and moments in the garland that I owe to this milestone.  

I dedicate this study to my family. Thanks to my parents, brothers, sisters, and 

most importantly my wife, Jayashree for her forbearance and kind support. Especially, I 

dedicate this work to my children, Om and Soham who gave up some of our quality time 

while I pursued this research. I am with you again! 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

Acknowledgements 

The completion of a dissertation is not a solitary endeavor. It is accomplished 

with patient support and guidance from many great souls. My sincere thanks to 

committee chairperson, Dr. Raghu Korrapati provided me with insightful feedback and 

expertise for all aspects of this research study. I also thank Dr. Reza Hamzaee for his 

invaluable advice on research design, and Dr. Walter McCollum for his critical review of 

the dissertation! Their contribution was significant to achieve the intended level of 

quality in this study.  

Many thanks to my colleagues at Intel Corporation - Mike O’Hair, Andy Jeffrey, 

Miguel Oviedo Bonilla, Jay Turpin, Greg Clark, Hassan Vishwa for providing active 

feedback throughout this study. Importantly, thanks to my managers Bruce Epling, Gary 

Nielsen, and Robert Benavidez for their outstanding and instrumental support throughout 

this quest! Intel is THE great place to work! 

 



www.manaraa.com

 

i 

 

Table of Contents 

List of Tables……………………………………………………………………………vii 

List of Figures ……………………………………………………………………………x 

Chapter 1: Introduction to the Study ..................................................................................01 

Background of the Problem .........................................................................................07 

Statement of Problem ...................................................................................................10 

Nature of Study ............................................................................................................11 

Research Questions ......................................................................................................13 

Hypotheses ...................................................................................................................14 

Variables of Study........................................................................................................16 

Dependent Variables ............................................................................................. 16 

Independent Variables .......................................................................................... 17 

Purpose of the Study ....................................................................................................19 

Theoretical Framework and Conceptual Foundation ...................................................21 

Definition of Terms......................................................................................................22 

Assumptions .................................................................................................................25 

Limitations ...................................................................................................................26 

Scope and Limitations..................................................................................................28 

Significance of Study ...................................................................................................30 

Need for the Study .......................................................................................................33 



www.manaraa.com

 

ii 

 

Social Change Implications .........................................................................................36 

Chapter Summary and Organization of the Study .......................................................37 

Chapter 2: Literature Review .............................................................................................40 

Research Strategy ........................................................................................................40 

Agile Approach to Software Development – Maintainability Perspectives ................43 

Agile Manifesto and Model’s Key Characteristics ......................................................49 

Software Development to Maintenance  ......................................................................51 

System, Resource Dependence, and Software Evolution Theory................................63 

Software Evolution and Maintenance Theory .............................................................68 

Software Evolution and its Relevance within ASDM .................................................71 

Software Maintainability Themes and Implications ....................................................75 

Software Maintenance Decomposition ................................................................. 77 

Software Quality: Internal and External Characteristics and Subcharacteristics .........82 

Software Development and Maintainability ................................................................83 

Development Model and  Software Maintainability Correlation  and  Research 

Method .............................................................................................................84 

Metrics and Related Research ......................................................................................87 

Software Maintainability Decomposition  ...................................................................90 

Analytic Hirerachy Process..........................................................................................93 

Research Methodology Preview…....………………………………………….…….94 



www.manaraa.com

 

iii 

 

Chapter Summary ........................................................................................................98 

Chapter 3: Methodology ..................................................................................................101 

Research Design and Approach .................................................................................101 

Justification for Research Design ....................................................................... 105 

Case Data and Selection Procedures ..........................................................................107 

Case Data Set Details .................................................................................................110 

Confidentiality ...........................................................................................................112 

Instrumentation and Materials ...................................................................................113 

Data Collection and Analysis.....................................................................................118 

Analytical Model of Theoretical framework .............................................................118 

Data  Analysis steps ...................................................................................................124 

Analytic Hirerachy Process (AHP) for Weights Assignment ....................................127 

Data Collection and Analytical Method Validation ...................................................133 

Operationalization and Computation of  Y and X Variables .....................................139 

Reliability and Validity ..............................................................................................143 

    Reliability and Validity of the Measurement .........................................................143 

    External Validity ....................................................................................................145  

    Intenal Validity ......................................................................................................145 

Chapter Summary ......................................................................................................146 

Chapter 4:  Data Analysis and Results .............................................................................149 



www.manaraa.com

 

iv 

 

Data Collection and Analysis.....................................................................................152 

Incomplete or missing data ................................................................................. 153 

Software System Data Selection ......................................................................... 154 

Data Standardization  .......................................................................................... 155 

Descriptive Statistics ........................................................................................... 156 

Multiple Regression Data Analysis ...........................................................................159 

Preliminary Analysis ........................................................................................... 160 

Research Question 1 ........................................................................................... 165 

Research Question 2 ........................................................................................... 167 

Research Question 3 ........................................................................................... 169 

Research Question 4 ........................................................................................... 171 

Research Question 5 ........................................................................................... 173 

Hypotheses Testing ..........................................................................................................177 

Summary of Findings .......................................................................................................186 

Chapter 5: Summary, Conclusions, and Recommendations ............................................188 

Overview of the Study ...............................................................................................187 

Research Conclusions ................................................................................................191 

Answering the Research Questions ...........................................................................193 

Implications................................................................................................................200 

Implications to IT and Business Management .................................................... 201 



www.manaraa.com

 

v 

 

Implications to Agile Project Management ........................................................ 202 

Implications to Software Maintenance Management ......................................... 203 

Limitations of the Study.............................................................................................204 

Significance of the Study and Implications for Social Change .................................205 

Recommendations for Future Study ..........................................................................207 

Study Conclusion .......................................................................................................208 

References ........................................................................................................................210 

Appendix A: Agile Practice Areas & Underlying Practices ............................................236 

Appendix B:  AHP Scoring Protocol ...............................................................................239 

Appendix C: AHP Pair-Wise Comparison & Weight Tabulation ...................................245 

Appendix D: Raw Data Collection Template with Actual Measures.. ............................251 

Appendix E: NIH Training Completion Certificate ...........................………………..…253 

Appendix F: Final calculation of AHP Weights ................................………………..…254 

Appendix G: Raw Data for first 5 iterations shown as example........………………..…255 

Appendix H: Non-standardized data for all variables ........................………………..…256 

Appendix I:  Standardized Z Scores  .................................................………………..…257 

Appendix J:  Descriptive Statistics Summary ....................................………………..…259 

Appendix K: Regression Model example for Software Analyzability & Charts…...….263 

Appendix L: Adjusted Regression Model without CI variable …………………….….267 

Appendix M: Curriculum Vitae .........................................................………………..…268 



www.manaraa.com

 

vi 

 

List of Tables 

Table 1. Software Maintainability Sub-characteristics per ISO/IEC 9126 Software 

Quality Standard Structure or list of Dependent Variables …………………………….16 

Table 2. List of Independent Variables ............................................................................. 17 

Table 3. Internal Software Quality Characteristics  .......................................................... 27 

Table 4. Types of software maintenance .......................................................................... 77 

Table 5. Metrics Used & some key studies that utilized these measures ......................... 89 

Table 6. Correlations between software maintainability sub-characteristics and software 

attributes ............................................................................................................................ 92 

Table 7. Software system selection criteria .................................................................... 109 

Table 8. Software system: Sample data collection sheet example .................................. 110 

Table 9. Software properties or code attributes with applicable measures definitions  .. 124 

Table 10. Maintainability - Dependent variables and their measures ............................ .124 

Table 11. ASDM – Independent variables and their measures………………………....126 

Table 12. Experts weight elicitation in AHP on system property or attribute level …...131 

Table 13. Software attributes, their measures, and the actual data template sheet ......... 140 

Table 14. ASDM / X variables and their specific measure with the actual data collection 

template sheet and data values as an example…. ........................................................... 142 

Table 15. Means and standard deviations for TDD, EFR, CI, SA, SC, SS, ST, & SM...157 

Table 16. Skew and Kurtosis for TDD, REFR, CI, SA, SC,SS, ST, and SM…………..164 



www.manaraa.com

 

vii 

 

Table 17. Pearson product moment correlations among TDD, REFR, and CI…………165 

Table 18. Multiple Regression for TDD, REFR, and CI predicting SA………………..166 

Table 19. Analysis of Variance for software analyzability (SA)……………………….167 

Table 20. Multiple Regression for TDD, REFR, and CI predicting SC………………..168 

Table 21. Analysis of Variance for software changeability (SC)……………………....169 

Table 22. Multiple Regression for TDD, REFR, and CI predicting SS……………..….170 

Table 23. Analysis of Variance for software stability (SS)………………………….....171 

Table 24. Multiple Regression for TDD, REFR, and CI predicting ST…………….….172 

Table 25. Analysis of Variance for software stability (ST)………………………….…173 

Table 26. Multiple Regression for TDD, REFR, and CI predicting SM…………….…174 

Table 27. Analysis of Variance for software maintainability (SM)…………………....175 

Table 28. Adjusted model without CI - Analysis of Variance for best model for software 

maintainability (SM)…………………………………………………...…………….....177 

Table A1. Agile Practice Areas and underlying objectives  …………………….…......236 

Table B1. AHP Scoring Protocol with explanation  ……………………………….......239 

Table B2. Software Properties or Source Code Attribute with applicable measure……244 

Table C1. Pair-wise comparison with respect to Analyzability sub-variable yielding the 

weight for complexity, coupling, duplication, and unit test effort…..............................245 

Table C2. Pair-wise comparison with respect to Changeability sub-variable yielding the 

weight for complexity, coupling, duplication, and unit test effort……………….……246 



www.manaraa.com

 

viii 

 

Table C3. Pair-wise comparison with respect to Stability sub-variable yielding the weight 

for complexity, coupling, duplication, and unit test effort. ............................................ 247 

Table C4. Pair-wise comparison with respect to Testability sub-variable yielding the 

weight for complexity, coupling, duplication, and unit test effort.................................. 248 

Table C5. Final Source Code Property Weight based on pair-comparison & 

normalization. ................................................................................................................. 249 

Table C6. Tools used for metrics measurement.............................................................. 250 

 

 

  



www.manaraa.com

 

ix 

 

List of Figures 

Figure 1. Single group interrupted Time Series Design ………………………………...12 

Figure 2. The conceptual framework – Agile model and its impact on software 

maintainability and its subcharacteristics ……………….……………………………....22 

Figure 3. Literature map organization overview…………………………………………42 

Figure. 4. Comparison of Waterfall & Agile model driven software life cycle stage ..…46 

Figure 5: Cost of change curve……………….…………………………………...……..48 

Figure 6: Operation/Maintenance and Development interaction within iteration 

cycles……………………………………………………………………………………..54  

Figure 7: Agile method and software quality assurance practices…………………...…..55 

Figure 8: Illustration of eXtreme Programming Life Cycle (XP) depicting maintenance 

phase…………………………………………………………………………………..…62 

Figure 9: Laws of software evolution - The Nineties view ……………………………..69 

Figure 10: Illustration of relationship between types of software change………….…....81 

Figure 11: Illustration of Software quality notion based on ISO/IEC 9126 model of 

software quality……………………………………………………………………….…82 

Figure 12: ISO/IEC 9000/9126 Software Quality model’s different views……..…...…91 

Figure 13: Theoretical model for this study……………………………………….……120 

Figure 14: Software maintainability model with source code metrics ………………...121 



www.manaraa.com

 

x 

 

Figure 15: Link and Map diagram explicating software quality attributes, code properties, 

and source code measure…………………………………………………………….…122 

Figure 16: Example of actual source code values and weights for single iteration ........138 

Figure 17: A Chart illustrating the analyzed software system specific statistics……….154 

Figure 18: Residual plot for software analyzability (SA)…………………………...….161 

Figure 19: Residual plot for software changeability (SC)………………………….......161 

Figure 20: Residual plot for software stability (SS)…………………………..……..…162 

Figure 21: Residual plot for software testability (ST)…………..……………………...162 

Figure 22: Residual plot for software maintainability (SM)…………………………...163 

 

 

 

 



www.manaraa.com

 

 

1

Chapter 1: Introduction to the Study 

Introduction 

Software development and maintenance are two distinctive yet very well 

connected phases within the software evolution and life cycle.  According to Martin and 

Osborn (1983), information technology (IT) software maintenance-related costs and 

efforts within IT organizations across the globe are expensive and repetitive in nature.  

Maintenance activities are labor intensive and entail programming as well as 

nonprogramming tasks (Bendifallah & Scacchi, 1987).  More maintenance implicates 

more maintenance efforts for programmers (Hoffer et al., 2008).  Furthermore, these 

activities are often significantly involved and are expensive IT fucntions (Arthur, 1988; 

Swanson & Beath 1998).  Specifically, adaptive and perfective software maintenance 

activities require 75% effort, whereas corrective maintenance tasks consume about 21% 

of the maintenance efforts (Bennett & Rajlich, 2000).  In addition, 85 to 90% of IT 

budgets go to legacy system operation and maintenance (Erlikh, 2000).   

Although quality is one of the goals within development projects, software 

developers’ efforts are often directed to deliver software on time and within budget.  This 

may often lead to the deployment of software with poor maintainability.  The goal of 

software maintainability must be established during the requirements, software design, 

and development stages (Kyte, 2011; Pigoski, 1997).  Recently, the value of the Agile 

software development model in delivering software early has been widely acknowledged, 

but shortcomings of this modern development approach have also been recognized.  



www.manaraa.com

 

 

2

Current Agile-driven development literature (Abrahamson et al., 2002; Cockburn, 2001; 

Fowler & Highsmith, 2001; Highsmith, 2004) is primarily focused on Agile's success in 

attaining early business value delivery, and there is a lack of the empirical literature that 

examines the Agile development model’s impact on the software maintainability within 

the postdeployment phase of the software life cycle.  Agile-driven software development 

projects are increasingly reported with success, meeting the time constraint–however, its 

maintainability assessment is still an open challenge for IT management.   

IT organizations often inadequately comprehend the maintenance implications of 

modern development technologies (Sneed, 1995).  When embracing innovation in 

software development methodologies, IT management needs to examine the implications 

across the complete software life cycle beyond development.  There are few studies 

conducted in the area of methodological impact on software maintenance (Banker, Davis, 

Slaughter, 1989) prior to the emergence of the Agile model.  Software process 

innovations are targeted to improve development productivity when the majority of the 

software life cycle costs are postimplementation (Swanson & Beath 1989).  A report from 

the Royal Academy of Engineering (2004) pointed out that the absence of a link between 

the project and organization’s key strategic priorities is the most common cause of 

project failure.  Software maintenance quality and maintenance cost are two of the key 

priorities of IT management, and these priorities can not be set outside of a software 

development project.  



www.manaraa.com

 

 

3

Strengthening the Agile values prescribed by Beck and Cockburn (2007), 

Information Technology Infrastructure Library (ITIL) practitioners recognize an 

immediate issue with attempting to design services from the operations standpoint 

(Johnson et al., 2003).  The issues are with the importance of the process being 

diminished, the possible high frequency of code change, contracts becoming less 

important, and change management becoming a burden or bureaucratic hurdle 

(Highsmith, 2002).  Another issue is that the comprehensive operational management 

support required for the completed service cannot be determined until all of the 

incremental iterations are executed.  Johnson and Higgins (2007) argued that none of the 

Agile methods makes it easy for operational management to align appropriate process 

interfaces.  Johnson and Higgins suggested cyclic assessment of changed demand of IT 

infrastructure, including prediction of the final level of required application software 

support.  Furthermore, on the operation side, the ITIL framework is too generic and 

offers a broad overview of the processes.  For instance, ITIL change management 

processes do not transfer easily to software development processes (Johnson & Higgins, 

2007).  With the lack of specific procedural guidance and alignment for both Agile 

developers and software maintenance management, today’s IT management is 

continually challenged to develop and maintain a quality software product. 

The Agile model advocates and emphasizes close collaboration efforts among the 

stakeholders.  Johnson and Higgins (2007) posited that the software developers and IT 

operational managers are aware that IT services provided to customers are dependent on 



www.manaraa.com

 

 

4

both parties understanding the customer requirement, understanding mutual constraints, 

and working together to deliver the best possible IT software and services.  With the 

same understanding, Johnson and Higgins (2007) further highlighted the need for 

including software maintenance management in the design and development stages to 

ensure that legacy services are correctly assessed and decommissioned.  With the rapid 

changes in technologies, supportability, maintainability, and associated maintenance cost 

of the software application could change over time. 

Some studies have attributed the increase in software maintenance to the increase 

in software complexity.  The culpable factors for higher software maintenance spans 

from poor design, unskilled resources, lack of adequate documentation, older 

technologies, lack of proper change management controls, and poor software 

development project governance (Deklava, 1992; Osborn, 1989).  For instance, Kemerer 

and Slaughter (1999) have argued that many of the problems in software maintenance are 

caused by a lack of knowledge of the maintenance process and of the cause-effect 

relationship between software practices and software maintainability.     

Gilb’s (1988) evolutionary development method of short release is the original 

key practice of extreme programming (XP), which is known as incremental development 

and allows software systems to evolve and refine based on the feedback from each 

release.  Cohen et al. (2003) argued that software maintenance is really the normal state 

of an XP software development project wherein the project evolves over time because of 

frequent iterations.  Stafford (2003) also viewed the first iteration as the initial release 



www.manaraa.com

 

 

5

and all following iterations as the maintenance stage of the development cycle.  Another 

practice of on-site customer is now referred to as real customer involvement, and the 

development team expects the inclusion of customer’s knowledge of the real environment 

into the development iterations (Keenan & Bustard, 2006).  Understanding the 

implications of these and other key Agile practices as a part of the Agile Software 

Development Model or ASDM on software maintainability is an important research need 

that is discussed and examined through this study. 

Concerns related to the higher cost involved in software maintenance have led 

Kremer and Slaughter (1999) among others (Basil et al, 1996; Belady & Lehman, 1976; 

Gefen & Schneberger,1996; Tamai & Torimitsu, 1992; Yuen, 1985), to study software 

evolution and development function in relation to software maintenance.  These studies 

have allowed researchers to test and analyze software maintenance efforts and internal 

maintainability related factors over the software life cycle.  Based on this research, the 

software maintenance phase and development model render itself fit for a study of the 

impact assessment of Agile model on software maintainability. 

Organizations are increasingly under pressure to adapt their business processes in 

response to relentless technological, organizational, political, and other changes 

(Davenport & Perez-Guardado, 1999).  Agile development methods allow the business 

organizations to respond to these changes in the business domain by delivering the 

critical software functionalities early in the development project cycles (Augustine, 2002; 

Beck, 2002;).  The Agile method, with its top variants–XP and Scrum–is garnering strong 



www.manaraa.com

 

 

6

advocacy from the software development communities, practitioners in mainstream 

business organizations from various sizes, and, most importantly, from business 

management for the embedded agility in its practices.   

Resolving the problem of higher software maintenance cost and effort is 

important because it will aid in understanding software maintenance behavior within 

software development projects driven by the Agile development model, a model that is 

gaining maturity and being used widely for its core orientation of faster delivery of a 

working software application.  According to Betz (2007), for systems with unclear and 

user-facing functional requirements, the Agile methods are the least risky approach to 

ensure the business value delivery.  Agile model in the software development domain 

offers a set of advantages that have gained it acceptance among the IT practitioners, but it 

also presents concomitant challenges and peculiar risks to application maintenance 

management within the IT operation organization.  Agile development methods have 

been implemented in the last 10 years, with the actual incubation process starting in the 

1990s in the minds of some software development practitioners who had the clear 

objective to decrease overall software development time by quickly creating working and 

reliable software. Everything in software changes–including the requirement, design, 

business, technology, team, and its team members–and hence the concern should be an 

ability to cope with change (Beck, 2005).  How this software maintenance and support 

organization translates this enforced change into the stature of adaptable organization as a 

whole is the key IT management challenge. 



www.manaraa.com

 

 

7

Agile methodologies are characterized by attributes of iterative development, 

constant customer feedback, and well-structured yet flexible teams.  Although the 

objective of the Agile development approach to leverage rapid core business 

competitiveness is well-disseminated, complete implication assessment of this modern 

development approach still needs to occur in Agile development, as well as in IT 

software application maintainability domains to eliminate aleatoric alignment.  The use of 

Agile methods potentially influences key tactical and strategic IT operation effectiveness 

indicators within application service and support organization.  Scant literature exists 

today that investigates the links between the Agile development approach such as XP and 

IT software maintenance, support, and IT operation effectiveness, especially within 

application service and maintenance management domain.  The core tenets, practices, and 

values of Agile have yet to scale and evolve to align with an IT software maintenance and 

operation management framework.  This study offers tutelage for the software 

maintenance, operation management, and software development organizations and 

establishes a coterminous framework that leverages software development, maintenance, 

service, and support management and its cost effectiveness within IT organizations.   

Background of the Problem 

Software maintenance costs are a significant expenditure, with some 

organizations allocating 60-80% of their IT budget to maintenance activities (Kaplan, 

2002).  There are enormous cost and effort pertaining to software maintenance spent 

across IT organizations while adapting to the Agile software development model to cope 



www.manaraa.com

 

 

8

up with the business changes.  Within this context, the Agile model’s implication on 

software maintainability has received renewed attention.  Beck (2002) also suggested that 

Agile methodologies founded on Agile principles have received great acceptance because 

of the increasingly changing business landscape and the pressure on IT organizations to 

respond to these changes.  Huo et al.  (2004) found in their analysis multifold outcomes 

related to Agile methods: 

1. Practices followed within agile driven development possess quality assurance 

(QA) abilities; some are practiced inside the development phase and others are 

supportive in nature. 

2. Agile QA practice occurrence is higher in Agile-driven development projects 

when compared to waterfall-driven development projects or initiatives. 

3. Agile QA practices are followed in very early stages of development.   

The understanding of software maintenance relationship with Agile development 

methodologies will help in developing effective development and maintenance 

management strategy to control and possibly decrease the software maintenance cost 

while retaining the Agile model’s benefits.   The study of software maintainability as a 

function of a software development model has lagged behind other studies that have 

highlighted the Agile model’s success within development projects’ boundaries because 

of a lack of empirical software maintainability related data.  Caun et al. (2010) pointed 

out that Agile model adoption is constrained by project size, type, project resource 



www.manaraa.com

 

 

9

experience with Agile, and availability of knowledgeable and committed customers 

(Erickson et al., 2005; Fitzgerald et al., 2006).    

Software evolution and maintenance is closely coupled with software 

development process rather than the mere outcome of the development function.  Ruiz et 

al. (2003) presented the ontology for the management of software maintenance projects 

and highlighted that in recent years researchers have focused their attention on looking 

for techniques that help to increase the efficiency of the Software Maintenance Process 

(SPM).  One way to improve software maintenance quality and decrease maintenance 

costs is to reuse previous information and knowledge with effective retrieval (Loof, 

1997).  It remains unclear how the developmental approach related practices collectively 

influence the very essential attribute of software quality–software maintainability.   

The core issue is that software maintainability is not often a major consideration 

during software application design, development, and implementation, as indicated in 

previous studies (Bendifallah & Scacchi, 1987; Schneidewind, 1987).  Other studies from 

Lee (1998) and Balci (2003) uphold the need of controlled design and maintenance 

process early in the software life cycle to reduce the software maintenance costs.  This 

puts adequate emphasis on the need for optimal alignment between the software 

development model and the software quality attributes that could provide data-backed 

intervention strategies to aid IT management.  This further can leverage organizations for 

better software life cycle management as well as end-to-end software evolution process 

governance.  The causal link will further help Agile-driven development organization, IT 



www.manaraa.com

 

 

10

management, and Agile project managers, who often fall short in envisioning 

postdevelopment technical debt, which is evident only in subsequent maintenance release 

cycles.  The low maintainability of software could eventually have adverse implications 

for the stable, reliable, and efficient business operation, and in turn, on the economy. 

Statement of the Problem 

The problem addressed in this study concerned the software applications that 

result into higher software maintenance cost due to lower maintainability at the end of the 

software development project caused by non-optimal alignment between Agile practices 

and software maintainability objectives. It is important to control software maintenance 

cost through the development of quality software systems for business organizational 

productivity, operational stability, and to promote social and economic progress.  When 

embracing innovation in software development methodologies such as Agile, IT 

management must examine the implications or impact of the development model across 

the complete software life cycle that spans well beyond the development phase.   

The software development approach influences the software quality including 

software maintainability, a key software quality attribute.  The specific problem, 

however, is that implications of the Agile development model on software maintainability 

and its subcharacteristics are still unknown. This void further continues to create 

misalignment between Agile approach and maintainability objectives and cost IT 

organizations later in the software application support cycle. When software application 

development cost is just a down payment (Kyte, 2011), higher software maintainability is 



www.manaraa.com

 

 

11

a long-term success factor within software development projects for a software product, 

argued Moser et al. (2007).  Kendall et al. (2010) concluded that the selection of software 

development methodology is a key decision that should be integrated within the strategic 

process prior to embarking on a new software development project.   

In sum, this study focused on the issue of addressing the alignment between Agile 

practices and software maintainability objectives. This issue is created due to lack of 

knowledge about the influence of the Agile model on software maintainability. This 

study tested the hypotheses that ASDM influences the software maintainability and its 

subcharacteristics: software changeability, testability, analyzability, and stability.   

Nature of Study 

The nature of this quantitative study involved assessing the software 

maintainability of the Agile driven software development system to uncover ASDM’s 

impact on software maintainability characteristics.  This study evaluated the impact of the 

ASDM-related independent variables characterized by TDD, Refactoring, and CI on SM 

in terms of SA, SC SS, and ST.   

SM and subvariables (SM: SA, SC, SS, ST) = f (TDD, REFR, CI). 

The above equation is revisited in Chapter 3 with additional detail in conjunction 

with the Analytic Hierarchy Process (AHP).  The final maintainability was calculated as a 

sum of the weighted dependent variables.  The multiple regression analysis was 

conducted to test the stated hypotheses.  Leedy and Ormrod (2005) advocated quasi-

experimental research design for researchers recording measures on dependent variables 



www.manaraa.com

 

 

12

for a single group before and after the treatment of the independent variable.  In further 

support, Creswell’s (2003) model for quasi-experimental design is shown below 

depicting the single group (software system in this case) with a treatment of TDD, REFR, 

and CI as independent variables characterizing ASDM in this case.  Software 

analyzability, changeability, stability, and testability were measured during each Agile 

iteration during which ASDM is used, based on existing software source code data.  The 

nature of the study thus involved measurement of software maintainability and its 

subcharacteristics after each iteration driven by ASDM, and hence, this research design is 

a hybrid approach of quasi-experimental and the time series experimental approach. 

Group A     O – X – O –X – O – X – O – X – O –X – O – X – O  

Figure 2.  Single group interrupted Time Series Design, Creswell (2003, p.169) adapted 
for this study that intend to measure the impact throughout the Agile development 
project. 

This study also embodies the cause-and-effect intent when assessing the Agile 

model’s implication on software maintainability.  The research data for this study was 

retrieved from a single multinational technology manufacturing organization.  The 

purposive data set of the software systems was drawn from its IT organization’s source 

code repository that used ASDM in its software development and evolution phase using 

either XP and or Scrum methodologies.  The need of this nonprobabilistic and 

judgemental selection was rooted in the research question that is specifically directed 

towards uncovering the impact of ASDM on software maintainability characteristics.  

Specifically, source code at each Agile iteration completion during the software 



www.manaraa.com

 

 

13

development project driven by ASDM was analyzed to assess the development model’s 

impact on software maintainability and the four subcharacteristics.   

Mendes et al. (2009) examined software maintainability measures and found that 

the most commonly used software maintainability metric was an ordinal scale metric 

based on expert view as one of many software quality attributes.  However, these 

subjective perspectives-based measures alone are not the right fit for this study.  Rather, 

this study integrates internal quality view on software product quality (Heitlager, 2007) 

utilizing software/source code properties or attributes and relevant measures listed for 

each dependent variable. 

Research Questions 

The purpose of this empirical study was to investigate the impact of the Agile 

software development model on software maintainability.  In congurence with this 

purpose, this quantitative study was guided by the key research question: How does 

ASDM impact the software maintainability? In this study, ASDM is operationalized 

using Test driven devlopment (TDD), Refactording (REFR), and Continuous Integration 

(CI) as key independent variables.  The study thus attempted to answer five emergent 

subquestions: 

RQ1.  How does ASDM that is characterized by TDD, REFR, and CI, impact 

software analyzability (SA)? 

RQ2.   How does the ASDM that is characterized by TDD, REFR, and CI, impact 

software changeability (SM)? 



www.manaraa.com

 

 

14

RQ3.  How does the ASDM that is characterized by TDD, REFR, and CI, impact 

software stability (SS)? 

RQ4.  How does the ASDM that is characterized by TDD, REFR, and CI, impact 

software testabiliy (ST)? 

 Lastly, the final research question was also examined to strengthen the outcome 

of this study by providing additional inferences through examination of impact on 

resultant maintainability characteristic that is a function of SA, SC, SS, and ST. 

RQ5.  How does the ASDM that is characterized by TDD, REFR, and CI, impact 

resultant weighted software maintainability (SM)? 

Hypotheses 

To answer the above research questions, 15 pairs of null hypotheses and 

alternative hypotheses were tested in this study.     

To answer RQ1, the first three pairs of hypotheses were proposed and tested. 

H01: TDD has no influence on the Software Analyzability. 

HA1:  TDD has a positive influence on the Software Analyzability. 

H02: Refactoring has no influence on the Software Analyzability. 

HA2: Refactoring has a positive influence on the Software Analyzability. 

H03: CI has no influence on the Software Analyzability. 

HA3:  CI has a positive influence on the Software Analyzability. 

To answer RQ2, the next three pairs of hypotheses were proposed and tested. 

H04: TDD has no influence on the Software Changeability. 



www.manaraa.com

 

 

15

HA4: TDD has a positive influence on the Software Changeability. 

H05: Refactoring has no influence on the Software Changeability. 

HA5: Refactoring has a positive influence on the Software Changeability. 

H06: CI has no influence on the Software Changeability. 

HA6:  CI has a positive influence on the Software Changeability. 

To answer RQ3, three pairs of hypotheses were proposed and tested. 

H07: TDD has no influence on the Software Stability. 

HA7: TDD has a positive influence on the Software Stability. 

H08: Refactoring has no influence on the Software Stability. 

HA8: Refactoring has a positive influence on the Software Stability. 

H09: CI has no influence on the Software Stability. 

HA9:  CI has a positive influence on the Software Stability. 

To answer RQ4, three pairs of hypotheses were proposed and tested. 

H010: TDD has no influence on the Software Testability. 

HA10: TDD has a positive influence on the Software Testability. 

H011: Refactoring has no influence on the Software Testability. 

HA11: Refactoring has a positive influence on the Software Testability. 

H012: CI has no influence on the Software Testability. 

HA12:  CI has a positive influence on the Software Testability. 

Lastly, to answer RQ5, three pairs of hypotheses were proposed and tested for the 

resultant Maintainability that was derived from sum of weighted SA, SC, SS, and ST. 



www.manaraa.com

 

 

16

H013: TDD has no influence on the resultant Software Maintainability. 

HA13: TDD has a positive influence on the resultant Software Maintainability.   

H014: Refactoring has no influence on the resultant Software Maintainability. 

HA14: Refactoring has a positive influence on the resultant Software 

Maintainability. 

H015: CI has no influence on the on the resultant Software Maintainability. 

HA15:  CI has a positive influence on the resultant Software Maintainability. 

Variables of Study 

Dependent Variables 

Besides software maintainability as a main dependent variable, the dependent 

subvariables to measure software maintainability are SA, SC, SS, and software testability 

ST. 

Table 1   

Software Maintainability Subcharacteristics per ISO/IEC 9000/9126 Software  

Quality Standard 

Y Maintainability subvariables Variable Abbreviation 

Y1 Software Analyzability SA 

Y2 Software Changeability SC 

Y3 Software Stability SS 
 

Y4 Software Testability ST 
 

 



www.manaraa.com

 

 

17

The four dependent subvariables were generated primarily from software 

maintainability related literature including ISO/IEC 9126-1 (2003) software quality 

standard and other researchers’ studies (Chen & Huang, 2008; Hegedu et al., 2010; 

Kanellopoulos et al., 2008; Kanellopoulos et al., 2010) that integrated software 

maintainability specific variables in their studies.  I used the following independent 

variables to examine the impact on the dependent variables in this study. 

Independent Variables 

The main independent variable that drives software maintainability in this study is 

the ASDM.  Three key variables that operationalized the ASDM model or main 

independent variable in this paper were identified as TDD, REFR, and CI.   

Table 2 

List of Independent Variables that Operationalize Agile Software Development Model 

(ASDM) 

 ASDM variables Variable Abbreviation 

X1 Test Driven Development TDD 

X2 Refactoring REFR 

X3 Continuous Integration CI 

 

 The pair-programming variable, although significant in Agile projects, was not 

included in the study due to its stable usage within the examined software development 

project.  Furthermore, all the data were extracted from an iteratively developed software 



www.manaraa.com

 

 

18

system that followed all key Agile model-driven XP practices listed in the Agile literature 

review. 

TDD (X1): Test-driven development is one of the key characteristics of ASDM 

approach in which unit tests are written before writing the actual code (Beck, 2003).  The 

creation of the test and coding follows testing until they pass.  The gradual test-code 

cycle is followed until the user functionality is delivered that may span one or more 

iteration.  The developers thus create a good amount of test code that can be measured, 

indicating whether ASDM followed TDD during the development.  This study measured 

the TDD in the percent of test classes created in every Agile iteration during the ASDM 

driven development project.   

Refactoring (X2): ASDM is also characterized by periodic refactoring of the code 

throughout the iterations.  The intent of refactoring is to drive the simplicity in the design 

and make the code more manageable in an incremental manner.  Developers take steps to 

improve the software program structure without actually changing its external behavior 

(Fowler et al., 1999) during the development iterations; however, it may not take priority 

over the user requirement-specific programming tasks and efforts.  The consequences of 

not doing refactoring—and, specifically, its impact on overall software complexity—are 

well recognized in the industry and management.  Refactoring efforts are evident when 

programmers spend their efforts simplifying large and complex classes or methods during 

the iteration resulting in reduction of the count of complex classes.  McCabe Cyclomatic 



www.manaraa.com

 

 

19

Complexity (McCabe, 1976) was used in this study to measure the complexity of the 

software classes at the end of every Agile iteration.   

Continuous Integration (X3): With incremental code development, an Agile 

software development team essentially introduces new bugs in the code.  Each iteration 

continuously changes the software code.  Continuous integration technique is a unique 

practice that allows the Agile software development team to build and integrate the 

software code on an ad-hoc and continuous basis whenever the changes are incurred to 

the software during the development phase itself.  This practice enforces the quality of 

the code and reveals the issues resulting from continuous development.  The count of 

integrated builds was used in this study to measure the extent of CI being used during 

every iteration.  This study conducted an analysis based on the existing empirical data, 

that is, the software systems developed using XP or Scrum, which are the most widely 

accepted Agile models today (Charette, 2004)  in the real field setting of an IT 

organization within a technology manufacturing corporation.   

Purpose of the Study 

The purpose of this investigation was to draw attention to the Agile development 

model’s influence on software maintainability characterized by its analyzability, 

changeability, stability, testability within software development project while 

comprehending the long-term impact on software life cycle.  The intent was not to 

declare current Agile methodologies within IT companies as inadequate or derisory when 

assessing the resulting software maintainability as a key long-term software quality 



www.manaraa.com

 

 

20

attribute.  Nor was it to declare Agile development methodologies as inefficient for their 

intended software development goals.  The intent was to provide quantifiable insight into 

how software maintainability is influenced by the Agile development model as a result of 

software development project within IT organizations.   

Software maintenance researchers consider software maintenance cost, both direct 

and indirect, as a leakage to business organization’s profitability (Kunstar & Havlice, 

2008).  The purpose of this study was to gain insight to build upon prior research, 

specifically Moser et al. (2007), Chen and Huang (2009), Kanellopoulos et al. (2010), 

and Sindhgatta et al. (2010), which were guided by software evolution and maintenance 

laws originally postulated by Lehman and Belady (1974).  These scholars have analyzed 

software maintainability within the software life cycle and software maintainability as a 

function of software development approach.  In extending these key researchers’ efforts, 

this study provided a much-needed acuity by focusing on the ASDM and a crucial 

attribute of software quality–software maintainability.   

It was hoped that this research would connotatively stimulate the significance in 

the increasingly important, but mostly debatable, undervalued, and overlooked 

maintainability side of the software evolution life cycle driven by the Agile model.  

Understanding software maintainability-specific dynamics within software systems 

approached with ASDM did contribute to sharpen the Agile approach for enhancing 

maintainability and yield a cost-effective software maintenance life cycle.   



www.manaraa.com

 

 

21

Theoretical Framework 

The research questions in this study were answered mainly within the tenets of 

laws of software evolution originally developed by Lehman and Belady (1974) and their 

revisions over the last 30 years (Lehman, 1991, 1996), with supportive perspectives from 

open system theory and resource dependency theory (Pfeffer & Salancik, 1978).  These 

supportive theories provide the fulcrum to multiple stakeholders including IT 

management, software development, and maintenance resources to design, deploy, and 

sustain the software efficaciously that participate at various stages of the software life 

cycle.   

The research question in the current study enlisted software maintainability-

related four subcharacteristics or factors as dependent variables and three Agile model 

attributes as independent variables, as highlighted in Figure.1.  Note that resultant 

software maintainability or indexed Y was regressed for X1 (TDD), X2 (Refactoring), 

and X3 (Continuous Integration) at the end, besides regressing all separate Ys on all X 

variables.  The indexed Y is essentially a sum of weighted analyzability, weighted 

changeability, weighted stability, and weighted testability.  This is because software 

maintainability is a function of its analyzability, changeability, stability, and testability.  

Agile development teams, IT, and system maintenance management will benefit from 

this integrative assessment approach to comprehend the impact of the Agile approach on 

individual attributes of maintainability as well as on cumulative resultant maintainability. 

 



www.manaraa.com

 

 

22

 

Figure 1.  The conceptual framework – Agile model and its impact on software 
maintainability and its sub-characteristics  
 

Definition of Terms 

This section highlights the key terms that are used in this study with added 

information and clarity. 

Adaptive maintenance: Changes made to the software system to evolve its 

functionality to changing business needs or technologies (Kunstar and Havlice, 2008). 



www.manaraa.com

 

 

23

Agile Software Development Model: The Agile model is a unique software 

development approach that is adaptive and agile in nature, characterized by iterative and 

nonlinear development pattern. The Agile model follows blend of development practices 

essentially derived from Agile manifesto throughout the development cycle as tabulated 

in appendix A. 

Analytic Hierarchy Process: Analytic Hierarchy Process is a multicriteria 

decision-making process originally proposed by Saaty (1980). 

Analyzability: Software capability to allow identification for parts, which should 

be modified.  ISO 9126 defined it as attributes of software that bear on the effort needed 

for diagnosis of deficiencies or causes of failures, or for identification of parts to be 

modified. 

Corrective maintenance: Changes made to software system to repair flaws in its 

design, coding, or implementation (Kunstar and Havlice, 2008). 

Complexity: Structural characteristics of software that represent how the objects 

within programs are interrelated within object oriented programming (McCabe & 

Watson, 2994). 

Coupling: This characteristic of software represents physical connections on how 

tightly the objects are related within object oriented programming (Chidamber, Darcy, 

Kemerer (1998). 

Duplication: It is the percent of all code that repeats more than once (in equal 

block of at least 6 lines; Heitlegar et al., 2007). 



www.manaraa.com

 

 

24

E-Type system: Software that is proprietary and not open standard and is widely 

used in the real world. 

Information Technology Infrastructure Library: Information Technology 

Infrastructure Library is an IT management framework or approach to IT service 

management offering the set of best practices (ITIL, 2002). 

Iteration: Repetitive and small cycle of development within an Agile development 

project (Beck, 2000). 

Object Oriented (OO): Software development paradigm or approach that refers to 

an ‘object’ as a main entity within the program structure. 

Perfective maintenance: Changes made to the software system to add new 

features or to improve performance (Kunstar and Havlice, 2008). 

Preventive maintenance: Changes made to the software system to avoid possible 

future problems (Kunstar and Havlice, 2008). 

Refactoring: It is a development practice used within the Agile development 

project to restructure the code without changing its external behavior (Fowler et al., 

2002). Refactoring is a technique that essentially simplifies the software code through 

several restructuring techniques throughout the development iteration or sprint cycle.  

Software maintainability: The ease with which a software system or component 

can be understood, modified to correct faults, improve performance or other attributes, or 

adapt to a changed environment (IEEE 1990).   



www.manaraa.com

 

 

25

Stability: Software capability of the software product to avoid unexpected effects 

from modifications of the software.  ISO 9126 defined it as attributes of software that 

bear on the risk of unexpected effect of modifications. 

Testability: Software capability of the software product to enable modified 

software to be validated.  ISO 9126 defined it as attributes of software that bear on the 

effort needed for validating the modified software. 

Waterfall: Software development model that is a sequential development 

approach with linear phases–mainly analysis, design, and implementation. 

XP: Extreme Programming: Agile development technique that is one of the 

leading Agile software development practices. 

Assumptions 

The assumptions in this study were driven by the Lehman’s (1997) software 

evolution theory and specifically by underlying laws of continuing change, increasing 

complexity, self-regulation, conservation of familiarity, and law of declining quality.  

The continuing system change theory asserts that the software will and needs to continue 

to adapt and change throughout its life cycle to retain its usability.  Agility in business 

requirements (Hirzalla, 2010), integration of new technology and tools within existing 

software system (Ruparelia, 2010), and continued corrections to stay functional and 

operational strengthen and support this assumption.  The theory of declining quality 

formulated in 1996 by Lehman and Belady essentially complements the continuing 

change theory and asserts that the software will decline in its quality if it fails to adapt 



www.manaraa.com

 

 

26

and integrate changes (adaptive, corrective, perfective, preventive), therefore leading to 

poor maintainability over time.  The other assumptions of this study are related to the 

increasing complexity, which states that software complexity grows with its evolution 

unless the work is done to reduce or maintain it, with eventual slow growth of a software 

system (Grubb & Takang, 2003).   

Additionally, this study also assumed that the evaluators are experienced Agile 

practitioners and are professional in their expert judgment when using AHP  to elicit the 

data from their work experience with one or more Agile-driven software development 

and maintenance projects.   

Limitations 

 The limitations in this study were that it was conducted based on existing data–

specifically, the software system that was developed using ASDM within an IT 

organization of a U.S.-based semiconductor manufacturing corporation.  The study 

examined a software system that was developed using XP and Scrum methodologies.  

Therefore, the results obtained may not be generalized among non-Agile software 

development projects.  The other limitation of the study is that it focused specifically on 

the software maintainability characteristics tree and its four specific subcharacteristics, 

and it did not address impact on other software quality characteristics such as portability 

or reliability.  Additionally, events such as IT software development organizational 

changes, development resource turnover, and overall IT organizational readiness to Agile 

and software support functions are not normalized and not incorporated into the study.  



www.manaraa.com

 

 

27

Finally, the data used was based on an XP-driven software development project that used 

an object oriented paradigm, so the results may not be directly applied to other 

development approaches or model variants that are being practiced within IT 

organizations.  This study’s focus was limited to studying four maintainability-specific 

internal subcharacteristics as shown in Table 3, and no other software quality 

characteristics to maintain clear focus surrounding the research questions. 

Table 3  

Internal Software Quality Characteristics Examined in this Study  

  

Internal Quality         

  Characteristics 

Software Portability 

Software 

Maintainability 

Software 

Reliability 

Adaptability Analyzability Maturity 

Installability Changeability Fault Tolerance 

Co-existence Stability Recoverability 

Replacability Testability   

 
Note. Bold items represent internal software quality characteristics examined in this 
study. 

Software development projects are expensive and demand the business 

deliverable to be accomplished within allocated resources, including budget and 

acceptable time.  With the given project constraints and valuable organizational resource 

allocation, IT development projects that are specifically driven to assess the impact and 



www.manaraa.com

 

 

28

overall efficacy of a development methodology such as Agile driven methods (XP, 

Scrum) are practically difficult to experimentally study within operationally active IT 

organizations.   

The high cost associated for the experimental setup to assess the impact of 

identified Agile-specific factors on software maintainability and application support 

functions, forces the research design to be based on post facto or already existing data.  

Prolonged engagement of the expensive and busy resources for a longer time may not be 

practical within the business organization for possible experimental research setting as 

highlighted earlier. 

Scope and Delimitations 

The scope was to establish an empirical link between the Agile-driven software 

development model adopted in the development stage and the software maintainability 

attributes of the developed software.  Despite the fact that the study addressed tenets of 

the Agile software development model, its functional characteristics, and how the Agile 

model impacted the increase or decrease in software maintainability, this study did not 

attempt to develop a causal model between Agile attributes and maintainability-related 

attributes.  This study was an extension of existing Agile model and software 

maintainability-related studies and how this model is a development approach in specific 

impacted software maintainability and its internal attributes or subcharacteristics.   

Another delimitation of the study was that the analysis did not attempt to 

highlight the implications on software maintainability within any specific work locations, 



www.manaraa.com

 

 

29

organizations, geographies, or countries.  Furthermore, this study did not attempt to show 

the merits or demerits of one Agile model attribute over another.  Researchers reported 

that the software language and technology selection (Briand et al., 1997), software 

maintenance processes (Grubb & Takang, 2003), software age (Banker,1992; Oman, 

1992), development team stability, experience, and skills (Pigoski,1997) are some of the 

factors that influence the maintainability.  This study, however, did not link these 

intervening variables that fall outside of the core Agile development approach model to 

software maintainability.  It is important to realize that software development and or 

improvement related to the project’s budgetary concerns could force organizations to 

retain software with higher maintainability despite realizing the need to improve the 

software maintainability.  In some cases, a software maintainability improvement project 

may even not get prioritized for several reasons within the IT program and project 

management domains.  This study did not analyze the possibility of losing the customer 

base due to poor satisfaction or inadequate usage of the software systems due to high 

maintainability nor forecast maintainability. The study didn’t assessed actual financial 

implications to IT management due to possible increases in software maintainability. 

Finally, this study did not track the software source code over the entire software 

life cycle, but only assessed maintainability for a specific set of revisions during the 

Agile development project based on the availability of data and specific selection criteria 

outlined in Chapter 3.  This delimitation arose from the nature of the data collected from 



www.manaraa.com

 

 

30

the specific IT organization within the identified corporation at specific times during the 

software life cycle, as bound by the quasi-experimental research design of this study. 

Significance of Study 

The Agile-driven software development phase is a high-leverage point in the 

software life cycle in terms of delivering intended business value early.  The knowledge 

about software maintainability within the Agile driven software development context will 

contribute to better software application design, qualitative integration, and better 

software maintainability during the postdeployment cycle.  For instance, software 

stability within the ASDM context is important for IT management as it also indicates the 

level of understanding of the development team about the software design, domain, and 

possible efforts that may be needed later in the Agile development iterations (Olague, 

2006).  Unstably designed software could provide needed cues to the Agile project 

management and development team to realign the focus on the development team’s 

adherence to one or more Agile practices, including the possible alteration in the 

development approach or process itself.   

This study was significant given that Agile is touted as the preferred software 

development model of today’s dynamic business world and IT organizations but with 

minimum understanding of its implications on software maintainability. This study 

benefited Agile practitioners and software development organizations integrating the 

Agile development model within their development ecosystem to coalesce Agile practice 

areas with software maintainability objectives proactively.  The findings added value to 



www.manaraa.com

 

 

31

software maintenance organizations by contributing specific changes required within 

software maintenance domain supportive to the Agile-driven software development 

model targeting proactive control and reduction of software maintenance cost over 

software life cycle.  Lastly, the IT service delivery and supportability risks may be 

mitigated with software maintainability embedded in the Agile development model.   

In earlier studies, Lee (1998) and Balci (2003) suggested that controlled design 

and implementation considerations during the development phase could influence 

software maintenance efforts and therefore the cost involved in postdevelopment phase–

often known as the sustaining and support cycle.  Most of the studies, however, are from 

the pre-Agile development model era, which further necessitates reexamining the 

underlying concerns within the Agile development model’s context that accentuates the 

software maintenance puzzle.  Minsky (1995) argued that this increase in software 

maintenance has a negative impact on IT efficiency and business value attainment given 

tight IT budgets.  Software organizations often operate in a highly dynamic market 

environment under tight time and cost constraints (Cugola & Ghezzi, 1998).   

The types of software maintenance, adaptive and perfective software 

maintenance, represent about 75% of maintenance cost, whereas 21% of the cost goes 

toward corrective maintenance (Bennett & Rajlich, 2000).  Typically 70% of software 

development budgets, according to Bennett (1990), are spent on software maintenance, 

and total maintenance constitutes anywhere between 40% and 90% of the total life cycle 

costs.  Furthermore, these higher maintenance costs, including ineffective resource 



www.manaraa.com

 

 

32

allocation, are one of the major detriments to the productive IT development projects.  An 

earlier study conducted by Carver (1988) examined the levels of complexity changes that 

occur during the software development phase and reported the finding that an increase in 

software complexity does impact the maintenance difficulty.   

As a necessary outcome, this study provided a practical perspective for software 

engineering scholars, Agile practitioners, software maintenance organizations, and IT 

management to align Agile practices with maintainability considerations in the design 

and development phases.  This study’s advocacy of assessing  software development 

model’s implications on software maintainability in turn could benefit the business and 

IT organizations deploying the software applications in multifold ways to improve 

quality and control maintenance cost.  Increasing reliance on software applications at all 

levels of organizations, societies, individuals, and economies further necessitated the 

critical assessment of software evolution within ASDM-driven software life cycle.  

Studying the impact of this modern development approach on software maintainability 

was the very first step toward this goal. 

The results of this study could help IT organizations make better decisions about 

the optimal alignment of the Agile model and attain better software maintainability.  The 

results could also be further used to leverage the Agile model within the cloud and virtual 

environment deployment, which is important to IT management and the Agile advocates 

for whom software maintainability is one of the key success indicators and considerations 

when attaining Agility through ASDM. 



www.manaraa.com

 

 

33

 

Need for the Study 

When debating the long-term life cycle impact of Agile methodologies, Majko-

Mattson et al. (2006) led intriguing discussions among Agile practitioners as well as 

researchers. Agile software development methodologies integrate several key practices 

that are intended to drive quality software development.  Agile practices such as pair 

programming and continuous integration assist the code quality improvement (Lindvall et 

al., 2004; Schwaber & Beedle, 2002).  Furthermore, a direct result of this software 

quality improvement should also be evident in the reduction in the software defects 

(Auvinen et al, 2005; Ileva et al.,2004; Laymann et al, 2004; ; Lindvall et al.  2004; 

Schatz & Abdelshafi, 2005).  Researchers (Lawrence & Yslas, 2006; Schatz & 

Abdelshafi, 2005) also argued that the Agile model adoption itself is a challenge in large 

(Larrson, 2003), complex, and distributed (Cohn & Ford, 2003; Mistra et al., 2006) 

projects and organizational settings.   

These mixed findings necessitated the need for the further evaluation of the 

impact of the Agile approach on software quality within bigger project as well as within 

large IT organization.  Formal code reviews (Auvinen et al., 2005), survey-based studies 

(Benefield, 2008; Rico, 2008; Vilkki, 2009) analyzing quality perception within 

organizations that adopted ASDM, and number of defects analysis (Ileva et al.  2004; 

Schatz & Abdelshafi, 2005) were conducted recently since Agile adoption.  However, 

there was no empirical study examining the implications or impact of the Agile model on 



www.manaraa.com

 

 

34

software maintainability and its subcharacteristics, the core internal software quality 

attributes.  Few studies that had attempted to connect Agile software development 

methodologies to software quality tenets, and no quantitative study exists that specifically 

examines the impact of ASDM on the four key software maintainability characteristics.  

As an example, researchers (Hulse et al., 1999; Jain et al., 2008; Madison, 2010) argued 

that software architectural and design considerations early in the development stage could 

potentially improve maintainability.  Standard and simplified design approach reduces 

the software complexity and, in turn, software analyzability—one of the key 

subcharacteristics that determine software maintainability (Jensen et al., 2008).   

In a correlation study, Misra et al. (2008) also studied Agile adoption-related 

factors and their relationship to software quality issues and the project’s success.  

Researchers, including Sindhgatta et al. (2010), also studied software maintenance 

through defect analysis in the postsoftware deployment phase, but they did not study the 

impact of the Agile-driven software development approach on internal quality 

characteristics related to maintainability based on source code property assessment. This 

void further underscored the need for this study. 

This study was further needed to comprehend the Agile model’s impact on long-

term software sustainability efforts due to the resulting maintainability from the strategic 

IT management perspective.  The software development model plays a critical role in 

shaping and defining the software life cycle and its postdeployment behavior.  Without 

knowing how a development model influences the software maintainability, 



www.manaraa.com

 

 

35

analyzability, changeability, testability, and its stability, IT management could potentially 

risk spending precious organizational resources on the wrong priorities.   

Within this integrative theoretical framework, the implication of ASDM as an 

early business value delivery approach (Agile Manifesto, 2001) is significant to 

comprehend within software maintainability realm.  Software maintenance researchers 

consider software maintenance cost, both direct and indirect, as a leakage to the business 

organization’s profitability (Kunstar & Havlice, 2008).  Furthermore, IT organizations 

may fail to reap the true benefits of potent characteristics of the Agile development model 

and deploy the software maintenance resources for more productive IT organizational 

needs.  The Agile software development model is one of the important determinants 

within the software quality chain that impacts the software maintenance and associated 

service domains; it is imperative for IT management to drive a closer examination of the 

model’s traits.  The rise in software maintenance efforts and cost translates into low 

return on investment (ROI) for the business and organization it serves, which eventually 

impacts the satisfaction of internal and external stakeholders and customers.  This study 

addressed the issues of software maintainability and lack of its adequate considerations 

during the development, as posited in several Agile and software maintenance literature, 

specifically when organizations are driven by the increasing software quality expectations 

and the strong need to deliver software early.   



www.manaraa.com

 

 

36

Social Change Implications 

The implications of this study are rooted to its ability to assess the impact that 

explains the Agile development model’s influence on software maintainability.  The link 

between this software development approach, referred in this study as ASDM, and 

software maintainability characteristics could potentially help IT management as well as 

Agile practitioners to comprehend how the Agile model may be leveraged and aligned 

when considering software maintainability implications in the postdeployment  phase.  

The study also has implications for reduction in software maintenance costs and therefore 

better productivity in a softer application management function.  Being able to 

understand the software maintenance through the concepts of software evolution driven 

by ASDM could help mitigate the software quality concerns, thus preventing 

destabilization of the software application as well as underlying business functions that 

rely upon it.  IT cost controls through better software maintainability, and project success 

rate improvement through delivery of quality software systems with a healthy life cycle, 

are socially significant implications of this study.   

The implications of this study for IT software development and maintenance 

management relate to their ability to understand software life cycle specifically initiated 

with Agile driven development approach and its impact on software maintainability.  

This knowledge now could make it much easier for Agile project management and Agile 

practitioners to adjust, enforce, and influence the specific Agile practices and techniques.  

It will also allow project management  to incorporate and adjust for risk within the 



www.manaraa.com

 

 

37

software application development, deployment, and postdeployment phases for better 

software maintainability.  At the same time, understanding the impact of the Agile model 

on software maintainability could help IT software application and maintenance 

management align maintenance resources and functions targeted specifically to Agile 

driven developed software systems.  The IT software development and maintenance 

management could drive Agile practices deeper into the software life cycle with greater 

emphasis put on continuous delivery and automated deployments, which are getting 

significant attention within the cloud computing and virtual environments while 

managing software maintainability. 

Chapter Summary and Organization of the Study 

This chapter has highlighted the importance of understanding software 

maintainability as an essential quality outcome of the Agile driven software development 

approach while controlling for variables such as Agile project size as measured by a 

number of agile developers, Agile model implementation period measured in number of 

years, and software development paradigm filtered to the object-oriented approach.  

Although this study was quasi-experimental in nature and assessed existing data, 

controlling for the above variables during the software system selection step was 

important.  As such, the control variables in this study facilitated the filtering of the data.   

The impetus behind this study was the wider attention that the Agile software 

development methodologies has received to improve business agility by IT management.  

Organizations are extracting the business value early in the software development project 



www.manaraa.com

 

 

38

through adaption of frequent changes within the software, but comprehending the 

dynamics between maintainability characteristics of software and ASDM is becoming an 

equally propelling need as the attention continues to grow.   

 This chapter also provided the theoretical framework used to analyze and 

determine the impact to software maintainability.  The analysis conducted in this study 

approached maintainability from a perspective similar to prior software maintenance 

function studies, though this study focused on the measurement of a key software quality 

attribute: software maintainability during the post-Agile development phase.  The 

organization of this study logically followed the conceptual background and problem 

statements highlighted in this chapter.   

The study proceeds as follows: Chapter 2 presents a review of relevant literature 

on Agile software development approach, software maintainability, underlying software 

evolution and maintenance theory, and key attributes of both these domains.  Prior 

software maintainability and ASDM-approach related studies are discussed and their 

tenets compared and contrasted within the context of research question of this study. 

Chapter 3 addresses the quantitative method used in this study, which included 

the research design and the data set used to analyze the implications of the Agile model 

on maintainability.  The additional two chapters were developed after conducting 

research data collection and analysis.  In Chapter 4, the data and empirical analysis 

results are presented, with the aim of answering the research questions posed in Chapter 

1.  Chapter 4 also includes statistical data that led to the rejection of the null hypotheses 



www.manaraa.com

 

 

39

put forth in the study.  Finally, Chapter 5 summarizes the conclusions that can be derived 

from this study.  This section contained a discussion of the study’s limitations and 

implications for positive social change.  The chapter also offers recommendations for IT 

management, Agile practitioners, and future research. 



www.manaraa.com

 

 

40

Chapter 2: Literature Review 

The research reviewed in this study utilized the tenets of software evolution 

theory to explain the Agile software development approach and its continued gains over 

the other traditional development methodologies over the last decade within the context 

of software maintainability.  Additionally, this review also focused on software 

maintainability–a critical success factor within the software development dynamics that 

conterminously assemble within the Agile driven development approach.  In this 

literature review, the first step involved providing an overview of how the software 

development model literature has been researched with the emerging need of ASDM in 

recent years.  Second, a review of literature that merged the tenets of ASDM within the 

context of Lehman’s software evolution laws is presented with identification of key 

ASDM factors or characteristics.  Next, a discussion follows on recent research studies 

pertaining to software maintainability and its subfactors, that is, analyzability, 

changeability, stability, and testability, focusing on its implicit and explicit links to 

ASDM.   

Research Strategy 

In conducting this literature review, five sources and databases were used: 

Advanced Computing Machines (ACM) Journals, IEEE Journals, IEEE conferences, 

Software Maintenance and Evolution Journal, ABI/INFORM Global, Dissertations & 

Theses at Walden University, Dissertations & Theses: Full Text, ProQuest Central, and 

Gartner Research Database.  The initial selection of articles about the tenets of software 



www.manaraa.com

 

 

41

development methodologies, ASDM, software maintenance, software maintainability, 

and software maintenance evolution in specific is 5 or more years old.  More studies that 

are contemporary related to software development methodologies (less than 5-years-old) 

were sought to provide the updated thinking and analysis based on Agile principles.  The 

majority of studies used in this review are from 2005 to 2011.  As Agile practitioners are 

also heavily disseminating though conferences, the literature review also spans many 

conference proceedings and practitioners’ papers presented at these professional 

conferences, mostly retrieved from IEEE database.   

The search terms were software maintainability, software maintenance, Agile 

development methodologies, software change, Agile development model, software 

development, software maintenance cost, software agility, business agility, software life 

cycle, software changeability, software complexity, software testability, software 

analyzability, software stability, software evolution, IEEE definition for software 

maintenance, project success, software changes, critical software development success 

factors, and ISO/IEC 9126 2004.  The research also included the keywords software 

maintainability, software quality, and Agile in the following combinations: quality in 

agile software development projects, software maintainability within agile, agile software 

development life cycle.  Some of the results were actual research studies whereas others 

were descriptive articles, case studies, and some were meta-analysis.  One dissertation 

related to Agile project success factors was also located, but not included in the literature 

review to greater depth as it did not assess software maintainability as a success factor in 



www.manaraa.com

 

 

42

its variable list.  Another dissertation related to software metrics and maintainability was 

included for its relevancy to software maintainability measures as well as relevant data 

analysis method used in this study. 

This chapter followed the literature map as shown in Figure 3, and it guided the 

organization of relevant sections beginning with ASDM as an independent variable 

followed by four dependent variables specific to Software Maintainability, namely, 

Software Analyzability, Software Changeability, Software Stability, and Software 

Testability.  Connectively, Lehman and Belady’s (1978) Software evolution theory 

examined these two distinct yet related domains.  The literature review took an 

integrative approach throughout this chapter.   

 

Figure 3. Literature map organization overview. 



www.manaraa.com

 

 

43

Agile Approach to Software Development–Maintainability Perspectives 

The software life cycle begins with a specific development paradigm.  Its 

multifaceted outcomes and impact on the interconnected entities, processes, and life cycle 

phases within software engineering domain are being studied widely within academia and 

research communities.  Modern software development models such as Agile are not an 

exception.  DeMarco (1978) contended that all the modern analysis methodologies are 

linked to improved system structure and importance of early development stages.  These 

modern practices also enhance detail definition of systems functions, sequenced tasks and 

well defined intermediate results, and improved communication between users and 

analysts.  Furthermore, all these aspects are consequently expected to improve the 

reliability and maintainability of a software system reducing the “burden of maintenance” 

(Dekleva, 1992, p. 355).   

In an exploratory study conducted by Dekleva (1992), the focus was targeted to 

comprehend the influence of a few selected system development methodologies on 

maintenance time.  The study examined four types of development approaches.  These 

approaches included software engineering referred to as a process-oriented methodology 

(Martin & McClure, 1985), information engineering approach that is data oriented, 

prototyping referred as an iterative approach, and CASE engineering examined as 

automation oriented approach.  Practically one or more combinations of these approaches 

are used during the system development, with each approach still unique in its own set of 

characteristics when compared to traditional SDLC approach.  The major limitation of 



www.manaraa.com

 

 

44

this study was that it was the first study to investigate the relationship between the 

development methodology and maintenance when the modern systems development 

methodologies were just being introduced, but with limited usage and proliferation within 

industries in the 1990s. 

Dekleva’s (1992) study yielded no evidence of correlation between the usage of 

modern software development methodologies and the maintenance time and cost 

involved.  The findings, however, showed that the changes in the time spent on 

maintenance activities with more reliable software resulted from the modern development 

methodologies, which needed less frequent repairs.  The system size (complexity) was 

linked to higher maintenance cost, thus software developers could potentially offset the 

benefits attained due to greater system functionalities (higher complexity) by spending 

more on the maintenance and loss in productivity.  Similarly, the number of users also 

influenced the maintenance time, suggesting that developers need to be considerate about 

the system with higher system usage base.  System age and organizational stability also 

influenced the maintenance time. 

Modern development methodologies apparently did not account for the reduction 

in total maintenance time (Dekleva, 1992).  Furthermore, it was found in Dekleva’s study 

that maintenance time actually increased after the system’s deployment in the early years 

of sustaining.  The methods, however, led to changes in maintenance time allocation with 

less time spent on emergency fixes, change evaluation requests, and implementation of 

mandatory changes including functional enhancements.  Li et al. (2010) cautioned that 



www.manaraa.com

 

 

45

cost drivers of software maintenance effort might vary across organizations and 

development projects. 

Changes within and outside of a software system’s ecosystem are inevitable.  

Ravichandar et al. (2008) examined the ripple effect of needs change and found that 

capabilities-based design improved the change-tolerance of the system with volatile 

needs.  In another study, Huo et al. (2004) attributed the acceptance of the Agile approach 

for its accommodation to dynamic requirements, close collaboration between developers 

and customers, and resulting early software delivery.  Note that throughout the software 

life cycle stages, requirement gaps and related issues (Apfelbaum & Doyle, 1997; 

Dethomas & Anthony, 1987; Mogyorodi, 2001; Monkevich, 1999) were significant 

factors contributing to defects, therefore influencing the software maintenance.  When 

compared to the waterfall model, Sommerville (2000) criticized the “ceremonious” 

procedural traits and inflexible approach in addressing changing requirements despite the 

model’s success in small and large size development projects (p. 65).  Today, Agile is 

seen as largely successful in smaller projects, but its ability to scale effectively within 

larger projects is still questionable.  For instance, system metaphor practice within 

ASDM is equivalently used instead of formal architecture.  Rosso (2006) contended that 

architecture designing and software development are simply the earlier activities within 

the software life cycle and that software evolution is inevitable given that business needs 

and hardware keeps changing. 



www.manaraa.com

 

 

46

Software maintainability related subcharacteristics; namely, analyzability, 

changeability, stability, and testability are benefited directly from qualitative software 

design and sound architectural thinking.  Huo et al. (2004) mapped both these models as 

shown in Figure 4 and found that Agile methods include software quality-guarding 

practices within development stages as well as some practices in a supportive role.   

 

Figure.4. Comparison of Waterfall and Agile model-driven software life cycle stages 
(Huo et al., 2004). 

 Huo et al. (2004) also found that for frequency and availability of these quality 

assurance practices, such as continuous integration, the test-driven development is higher 

and early in the process stages.  Software development projects are often expensive and 

demand well allocated resources, including adequate budget and time.  With given 

project constraints and business value at stake, IT development projects specifically 



www.manaraa.com

 

 

47

driven to test the impact and overall efficacy of the Agile development methodology 

(such as XP and Scrum) in real-life settings are practically impossible.  

Within iterative development cycles in Agile-driven projects, the development 

techniques or characteristics have very short feedback cycles (Beck, 2005).  As an 

example, test-driven development (TDD) takes minutes to implement tests, leading to the 

code fulfilling that test.  The continuous integration technique allows the programmers to 

change the code, recompile, and test its working in minutes on a regular basis throughout 

the day.  The sprints in Scrum, or iteration in XP methodology, can be one to a few 

weeks, allowing for the working functionalities to be delivered ready for soliciting the 

feedback throughout this development cycle before moving to the next chunk of work. In 

the depiction presented in Figure 5, Ambler (2006) contended that ASDM practices allow 

the defect detection early compared to traditional development approach.  As shown, the 

cost is lower when the frequent feedback cycles occur, or when the length of the feedback 

cycle is low.  With the traditional development approach, for instance, the acceptance and 

system testing are open to the customers and testers only after months of development 

work.  With longer  feedback cycles, the changes potentially demand time and attribute to 

further delay in releasing the working software for its use. The cost to change the code 

based on early feedback during the development iterations is less as the code is still in its 

formation state.  As the software code complexity grows with the development work 

progressing further, the accommodation of change, testing, and implementation of it is 



www.manaraa.com

 

 

48

still feasible within iterative Agile projects due to its characteristically change-supportive 

practices.   

  

Figure 5: Cost of change curve (Ambler, 2006). 

Pair-programming practice within Agile has an ability to detect and prevent the 

futuristic defect every minute when the developers develop the code daily throughout the 

iterations.  As highlighted earlier, the continuous integration, TDD, and active customer 

participation throughout the iteration inhibits the defect buildup well ahead of the code 

deployment (Ambler, 2009; Beck, 2005).  The cost to fix the defect found later in the 

software life cycle may involve regrouping of technical resources to comprehend the 

change implications as well as time investment to actually implement the change.  The 

cost of actual software defect in terms of the impact to the business is often high and may 

lead to loss of the revenue for the business relying on the software application for its 



www.manaraa.com

 

 

49

operational functions. The feedback cycle, from the paired programmer, testing tool, and 

active customers in the Agile-driven development, in summary, is small and often 

minutes to hours (Ambler, 2009).  The cost of change within the Agile development 

paradigm is essentially flat as seen on the left side of the curve in Figure 5.  As marked in 

red, the software defect gets detected way later due to the longer feedback cycle that is 

often in months before the customer even can see the working software and begin testing.   

Pahl (2004) posited that software’s ability to adapt to its requirements and 

environment throughout its life cycle is critically vital for core business in continually 

evolving environment.  With the Agile development model’s absorption in the 

mainstream (Augustine, 2010) in recent years, examining its implication on software 

maintainability, a key quality attribute of the software life cycle in the post-deployment 

phase, is critical for IT management to govern end-to-end software life cycle cost 

effectively. 

Next, the Agile approach to software development and evolution is based on a 

specific set of methodical practices, and thus the maintainability perspective cannot be 

completely comprehended without the knowledge of the Agile manifesto.  The upcoming 

section sheds light on the fundamentals of the Agile manifesto and its underlying 

principles followed by key practices that characterize ASDM. 

Agile Manifesto and Model’s Key Characteristics 

  Cockburn (2006) highlighted the Agile manifesto that is based on four core 

principles as:  



www.manaraa.com

 

 

50

1. Individuals and interactions over processes and tools 

2. Working software over comprehensive documentation 

3. Customer collaboration over contract negotiation 

4.  Responding to change over following a plan. (p. 284) 

 These agile principles when further demystified, can be elaborated into classes: 

self-efficacy (individuals), collaborative teams (interactions), self-managed and focused 

team approach (working software), cross-functional team alignment (customer 

collaboration), and responsiveness and flexibility (responding to change). 

Most traditional methodologies significantly put stress on linear processes, 

planned activities, tools, and documentation whereas “agile approaches place eighty 

percent of their emphasis on ecosystems-people, personalities, collaboration, 

conversations, and relationships” (Highsmith, 2002, p. 40).  These Agile principles form 

the required meshwork to uphold the independent variable: the ASDM of this study.  The 

Agile model or ASDM exhibits the following key characteristics that distinguish it from 

any other legacy, as well as other modern development models.   

Some of the Agile practices are interdependent and hence prove effective when 

implemented and practiced collectively (Beck, 2000).  However, organizations may or 

may not integrate all the practices in their software development projects, and will 

therefore yield varied levels of success (Conboy & Fitzgerald, 2010).  The details of these 

key Agile characteristics are tabulated in Appendix A, which enlists the key practices in 



www.manaraa.com

 

 

51

each area.  These key practices are referenced in subsequent discussions related to 

software maintenance and maintainability. 

Agile model is characterized by several unique practices, such as iterative and 

test-driven development and multiple, short, and continuous releases (Beck, 2000).  On 

the other hand, software stability and business continuity are essential requirements of the 

software maintenance and operation phases (Khan, 2010).  Besides software stability, 

several other aspects of software maintainability such as software analyzability, 

testability, and changeability in turn influence the maintenance function and efforts. In 

summary, through these practices, the Agile model collectively shapes the development 

team’s actions, which in turn may influence software quality characteristics including 

maintainability. 

Software Development to Maintenance 

Software development is intellectually complex activity (Vessey & Glass, 1998) 

and demands expertise in the areas of problem solving and constructing software (system 

and software discipline).  Software maintenance, although a distinct phase of the life 

cycle, involves similar functions, but prioritizes different objectives with one of the 

critical goals being to bring the software back to working or updated state.  The specific 

artifacts produced during a life cycle are the results of the methodology definition, 

processes, and management philosophy.  Importantly, these outcomes can be used to 

understand and evaluate the success or failure of a methodology, as well as its impact and 



www.manaraa.com

 

 

52

value for the organization (Chiang & Mookerjee, 2004; Green, Hevner, & Collins, 2005; 

Rai, Lang, & Welker, 2002). 

Software maintenance, support, and development contend (Gibson & Senn, 1989) 

for the precious IT resources–money and programming resource time.  Organizations 

often segregate expert programmers and maintenance programmers primarily between 

business critical, complex software, and relatively less critical or less complex 

applications.  However, complex maintenance issues are practically handled by 

competent programmers in the line of escalation and could consume substantial time.   

It is estimated that there are more than 100 billion lines of code in production in 

the world, and as much as 80% of it is unstructured, patched, and badly documented 

(Vliet, 2008).  It is a colossal task to maintain the software systems to satisfactory 

operational levels with timely error correction within SLA for each reported error.  At the 

same time, these systems must be adapted to inevitable changing environments such as 

updated infrastructure, new functionalities, and increasing user needs. 

Agile practices are gaining increased attention within IT organizations.  

According to Knipp et al. (2010), “Agile concepts have reached the tipping point, with 

rising rates of adoption in almost every industry” (p. 20).  Chiang and Mookerjee (2004) 

emphasized the improvement in the development process and its relationship with 

software maintenance.  They argued that the benefits of process improvement are not 

limited to accelerating the development work, but also to reducing the effort spent on 

corrective activities.  Software maintainability is one of the key success factors for 



www.manaraa.com

 

 

53

software development, and software development process need to influence this aspect as 

much as possible, according to Moser et al. (2007).  They contended that XP technically 

supports and enhances internal attributes of software maintainability through simple 

design, continuous refactoring, integration, and TDD approach. 

Within the ASDM context, Murphy, Duggan, and Norton (2009) of Gartner 

Research warned that Agile development done incorrectly may result in strong initial 

productivity, but could quickly add to an increase in software maintenance and support 

costs, if key Agile practices are not put in place.  They further contended that the “real 

productivity comes into play by finding defects sooner, focusing on what users really 

need, and reducing the amount of rework” (Murphy et al., 2009, p. 210).  In the defense 

of ASDM, Beck (2000) argued that XP-driven development projects integrate software 

maintenance into the subsequent iterations.  All the iterations after the initial release 

essentially fall into the maintenance stage of the development cycle, according to 

Stafford (2003).  Iterative development allows developers to validate the software 

throughout the development cycle instead of conducting the validation at the end.  It is 

also noteworthy that, at times, the software maintenance may be deluged with periodic 

but constant streams of changes through short release cycles to production.  Ferreira and 

Cohen (2008) reported the impact of the iterative attribute of development, continuous 

integration technique, TDD, feedback, and collective ownership on stakeholders’ 

satisfaction with the Agile development process and development results.  Iteration, 

continuous integration, and collective ownership were found to have the strongest impact 



www.manaraa.com

 

 

54

on this satisfaction measure.  Note that Agile may be seen as an approach that disgorges 

the functionalities or requirements too often into the production environment and hence 

cause of possible service interruptions, as illustrated in Figure 6. 

 

Figure 6: Operation/Maintenance and development interaction within iteration cycles.  

Pair programming, one of the key Agile practices that is more prevalent in XP, 

yields more than just dissemination of knowledge across the team and error detection 

mechanism.  It is an essential Agile trait that actively promotes continuous improvement 

in the current system as well as the futuristic application development efforts.  Williams 

and Nosek (2000), in their study related to pair programming, found that this key Agile 

practice reduces the defect rate; furthermore, it does not impact the Agile development 

team’s efficiency negatively.  On the other hand, several researchers (Eberlein et al., 

2002; Paetsch et al., 2003) proposed a basic form of requirements management within XP 

to address quality-related concern of the system. 



www.manaraa.com

 

 

55

TDD, another key Agile practice that rapidly vacillates between test case and 

actual code, enhances the ability of the development team to code incrementally, 

continually, and confidently without breaking the current state of the system.  With every 

code addition and change backed by well written test or series of tests, software 

testability is also expected to be higher.  Furthermore, TDD also serves as a foundation 

for refactoring, which is another key Agile practice that allows the Agile development to 

decouple the code and allow scalability of the application (Martin, 2003). 

  

Figure 7. Agile method and software quality assurance practices (Huo et al., 2004). 

Software refactoring is a restructuring technique to improve code quality (Fowler 

et al., 2002), especially extensibility, reusability, and maintainability without preserving 

its changing software code’s external behaviors (Mens & Touwe, 2004).  Refactoring 

practice from its inherent approach also appears to influence software stability and 



www.manaraa.com

 

 

56

changeability (Hegedus et al., 2010; Liu et al., 2007).  Agile literature and practice 

suggested that TDD practice leads to an improved software design, and that, in turn, has a 

substantive influence on software maintainability, in specific software testability.  

Siniaalto and Abrahmsson (2007), in their comparative study, reported the impact of 

TDD on software design.  They found that the impact of TDD on software design was not 

as obvious as expected; however, the test coverage was high in TDD adapted projects. 

To strengthen the refactoring practice further within ASDM, additional Agile 

practice – the developer story was suggested by Jensen et al. (2008), and their field 

experiment’s results showed that developer stories did affect architecture of the system as 

well as the developer’s actual work and approach towards architectural issues.  They 

further contended through explicated and visualized refactoring that  

developer stories increase the possibility of developing a practicable architecture through 

a series of intended options, through creating disciplined and recurring activities that: 1) 

facilitate sharing and embodying of knowledge about architectural issues, and 2) amplify 

visibility of refactoring efforts and this key practice for both customers and developers. 

(Jensen et al., 2008, p.183) 

Simplicity in design practice ideally drives the iteration-specific user stories to 

completion status without adding unnecessary complexity in the design of the system.  

This agile practice takes an iterative approach and works only on a chunk of stories for 

applicable iteration.  Continuous evolvement is thus at the core of this practice.  The 

simple design objective also ensures that the code is less complex and easy to maintain.  



www.manaraa.com

 

 

57

The refactoring practice in Agile is a small and periodic transformation of the code that 

improves the system without altering its behavior in any way.  Unit tests are run to ensure 

that the system continues to work without breaking after each refactoring cycle.  

Development teams do not need to wait either for iteration or release to complete, and 

refactoring can be done during iteration every hour or every day.  With the only 

objectives being to improve the design, simplicity, and maintainability of the system 

code, refactoring is followed throughout the development phase (Martin, 2003). 

Software maintainability, on the other hand, has been researched extensively in 

the past.  Gibson and Senn (1989), in their experimental study, investigated the 

relationship between system structure and software maintainability and found that 

software structural differences impact the software performance.  Additionally, 

improvement in the system structure decreases the time required to perform maintenance 

and reduces the frequency of ripple effect errors.  Gison and Senn (1989) argued that 

maintainability of the system is evident in the time required to complete the change 

implementation (time), accuracy or correctness of the changes or modifications 

(accuracy), software programmer’s confidence in the updates or changes made 

(confidence), and their own perceptions of the complexity of the software (perceptions).  

Maintainability is an attribute that is a combination of the software system and the 

maintenance team that performs the changes or maintains the software system (Hordijk & 

Wieringa, 2005). 



www.manaraa.com

 

 

58

The two critical software life cycle phases are distinctly clear, specifically when 

the software maintenance phase is consistently reported as being the most expensive, 

with 66% of the total software life cycle cost (Yip & Lam, 1994).  Due to the cost of 

sustaining it, software maintenance is an expensive burden to businesses that is also 

referred as technical debt in modern, Agile development practices.  Yip and Lam (1994) 

further contended that even structural improvements could add several advantages over 

the life cycle of actively maintained software system over complete redesign, which may 

not always be an option for IT management.  Complex systems are difficult to 

comprehend and hence offer maintenance challenges, in addition to further corrective 

maintenance, in their life cycle (Gremillion, 1984; Lientz & Swanson, 1980; Vessey & 

Weber, 1983).  In summary, system complexity is related to software maintainability. 

For developers, according to Hotle and Norton (2009), Agile often is the most 

effective approach to maintenance and enhancement-specific software projects.  Software 

maintainability and support specific considerations, however, are given short shrift when 

balancing the Agile principles within Agile-driven development project.   

Software maintenance is defined as “the process of modifying a software system 

or underlying component after its delivery to fix faults, improves performance or other 

attributes, or adapt to a changed environment” (IEEE610, 1990, p. 92).  The fundamental 

problem is that maintenance will continue to remain a big issue in the coming years.  

Because of the changes made to software, its structure degrades.  Specific attention to 

preventive maintenance activities aimed at improving system structure is needed to fight 



www.manaraa.com

 

 

59

system entropy from time to time.  Gibson and Senn (1989) further argued that the 

problem of maintenance is circular, i.e., software maintenance difficulty is due to its 

underlying complexity.  It is because of this same complexity that more software 

maintenance is needed throughout the application life cycle. 

A study conducted by Helms and Weiss (1985) found that a high amount of 

corrective and perfective maintenance was indicative of problems with the system 

development methodology.  However, Agile development models were not matured fully 

and developed around this time frame; re-examining this assertion in the light of today’s 

dynamic software development landscape is required to assess the implications of 

development approach on software maintainability. 

In another study, Kan (2002) argued that the actual numbers of defects reported 

during the maintenance process are linked to the development process itself, and that 

fixing the defects with a quality fix at the earliest possible time is the priority action that 

can be taken during the maintenance phase.  Additionally, reports estimated that 

regression testing could take as high as 80% of the overall testing budget and up to 50% 

of the cost of software maintenance (Harold, 2002).  Kunstar and Havlice (2008) 

contended that the research in the future would aim to the improvement of maintenance, 

instead of trying to eliminate it given that the changes in the system and user 

requirements will be a constant part of the competitive and dynamic business 

organizations. 



www.manaraa.com

 

 

60

Within the development team, driven by Agile development methods, developers 

take on new quality improvement-related tasks, and testers get involved earlier in the 

project (Murphy, 2009).  The cost of defect removal is lower than the cost of testing in 

maintenance phase after the software is deployed, according to Kan (2002).  In summary, 

Software maintainability is not often a major consideration during software development 

and design phase (Bendifallah & Scacchi, 1987; Schneiderwind, 1987).  A more 

controlled design and implementation process followed early in the software life cycle 

could reduce the software maintenance costs through improved software maintainability. 

When studying key Agile specific characteristics, Mens and Tourw´e (2004) 

studied the refactoring practice within the larger context of software process and 

examined its impact on the development process.  The study, however, did not provide 

any explicit links and impact assessment of refactoring to the software maintenance 

aspect.  In another recent study, system dynamics (SD), a simulation model was proposed 

by Cao et al. (2010) that focused on “essential agile practices”–refactoring and pair 

programming (p. 3).  Their results suggested that the cost of implementing the software 

changes increases in the later phase of development.  Furthermore, the cost also increases 

with reduced productivity with delayed refactoring.  Pair programming practice has been 

found to assist completion of more tasks within planned iterations at a lower cost than 

non-pair programming efforts.  Although their model offered an integrated system 

approach, the model, however, is limited in its ability to analyze the impact of agile 

development practices on project deliverable, productivity, and cost.  The current study, 



www.manaraa.com

 

 

61

on the other hand, stretches further to analyze the impact of the Agile model on software 

maintainability characteristics based on its direct influence on the source code properties. 

While examining XP and its implication on maintainability, Moser et al. (2007), 

in their case study, reported that the XP method supported the development of easy to 

maintain code.  They studied code properties, MI (maintainability index), moderate 

growth in coupling, and complexity metrics during development stages.  A limitation of 

this single-case study was that they used the existing maintainability index (MI) measure 

as defined by Oman et al. (1994), which was originally derived in a non-XP environment.  

An important assumption of this study was that moderate growth would occur in the 

maintainability trend, but a decreasing trend over time should result in better 

maintainability characteristics.   

Lastly, the model proposed in this paper may be used to detect the possible issues 

in development by noting the evolution of maintainability matrices.  Within the Agile 

context, software maintainability state may be monitored using this model during 

development, in addition to an intervention technique, such as refactoring that can be 

deployed more often during the iteration.  Hordijk and Wieringa (2005) also contended 

that uncovering the related software design decisions and factors is a critical step to drive 

the software maintenance cost down.  In their study, software maintainability factors 

were discussed; however, those were only related to change efforts, efforts per unit, and 

volume of functional change size. 



www.manaraa.com

 

 

62

Kajko-Mattson and Nyfjord (2009) studied organizations that adapted ASDM (XP 

and Scrum) within the software evolution and maintenance cycle.  They found that that 

agility was higher in the implementation phase compared to the pre-implementation 

phase, and concluded that the Agile aspect of the development approach was relevant in 

the context software evolution and maintenance.  Figure 8 illustrates the typical XP-

driven life cycle with maintenance phase that constitutes the planning phase, iterations to 

release phase, and productionizing phase, according to Kunz et al. (2008).   

 

Figure 8.  Illustration of  eXtreme Programming Life Cycle (XP) by Kunz et al 
(2008)depicting maintenance phase. 
 

Thus, as revealed in the ASDM related literature, software evolution and 

maintenance phases are integrated within ASDM, therefore triggering the subsequent 

need to investigate into software evolution theory and related literature.  The next section 

examines literature pertaining to system theory, resource dependence theory, and 

software evolution theory within the context of the research question of this study that 

was probed towards the assessment of impact of ASDM on software maintainability.   



www.manaraa.com

 

 

63

System, Resource Dependence, and Software Evolution Theory 

System theory is first discussed in order to interlock the theoretical foundation of 

this study in an upcoming section. According to French et al. (1985), organizations are 

open systems, and they continually interact with their environment.  Furthermore, a 

system is constituted of two or more related or interdependent subsystems with clear and 

identifiable boundaries.  An organization can be viewed as a goal-seeking open system 

that aims to create and distribute value (Sanchez & Heene, 2004).  They further added 

that an organization is an open system of resource stocks and flows–a system in which 

resources flow into and out of the organization and where a “strategic logic” acts as “the 

operative rationale for achieving an organization’s goals through coordinated 

deployments of resources” (Sanchez & Heene, 2004, p. 45).  Software development and 

maintenance function adhere to open system theory whereby IT development and 

maintenance functions that may or may not be integrated within the same organization 

are committed to working on a common deliverable that impact the business value, 

customer satisfaction, and core business efficiency.   

In general systems theory (GST), an organization is viewed as a complex system 

with boundaries that interface and allow input and output–simplified abstractions are 

often used within system theory.  This system exists within a larger external environment 

that is constantly exerting pressure on its boundaries, an environment with which the 

organization must interact (Fossum, 1989).  Furthermore, Fossum (1989) contended that 

systems theory recognizes that a change in one part of the system often creates change 



www.manaraa.com

 

 

64

throughout the system.  Organizations respond to support the changes irrespective of the 

origin of the changes in various levels.  According to Katz and Kahn’s (1978) open 

systems model, structure first develops out of technical needs and later from internal 

integration pressures in combination with shifting demands from the environment.  This 

observation applies to software development organizations that update their internal 

organization processes, resources, and structure to align with ASDM as well as software 

maintenance function that supports the core development function through software 

application evolution and maintenance.  Note that originally, the Agile model is being 

introduced to support the rapid business changes (environment) triggering potentially 

several resultant business processes and software maintenance changes within IT 

organizations. 

Secondly, resource dependence theory was fully developed by Pfeffer and 

Salancik (1978), and it is based on the core assumption that their environments control 

organizations.  These theorists also suggested how organization management could learn 

to navigate the harsh seas of environmental shifts and turbulence (Hatch, 2006).  

Resource dependence theory argues that an interorganizational network analysis can 

assist an organization’s decision-making management to comprehend the power-

dependence relationships that subsist between its organization and other connected 

entities.  This knowledge could empower management to identify as well as predict the 

sources of influence from the environment (Hatch, 2006).  By using this knowledge, 



www.manaraa.com

 

 

65

management can incorporate counteracting dependence and could offset some of this 

environmental influence.   

Each organizational action taken to reduce or manage uncertainty may amend the 

connectedness of the system with possible alteration of the business, technical, and 

management processes and work flow to other organizations.  In other words, actions 

taken to manage interdependence in the long run may increase the interdependence 

among influential environmental entities, requiring further actions to manage the newly 

created uncertainties (Pfeffer & Salancik, 2003).  Along the same lines, examining the 

influence of ASDM on software maintainability in this study is a step toward managing 

the new resultant interdependence within IT organizations.   

The organizational response to environment conditions and changes in processes 

may reach beyond just the core organization and its structure.  According to Pfeffer and 

Salancik (1978), there are two broadly defined contingent adaptive responses: the 

organization can adapt and change to fit environmental requirements or the organization 

can attempt to alter the environment so that it fits the organization's capabilities.  

Adaptations, as posited by Pfeffer and Salancik, can include initiatives that bridge the 

boundaries of the organization in order to manage interdependence with other 

organizations.  Additionally, these adaptations that are highlighted by resource 

dependence theory are not limited to changes in the focal organization’s internal structure 

alone (Tsoukas & Knudsen, 2003).  It thus indicates the proliferation of the changes and 

its implications reaching the related suborganizational processes and governing 



www.manaraa.com

 

 

66

management domains through interorganizational dependency links.  In summary, 

resource dependency theory is aptly positioned to strengthen the business case for the 

research question of this study as well as guide the research design examining 

implications on software maintainability characteristics. 

Lastly, Lehman’s (1997) software evolution framework put forward several laws 

that provide the foundational framework to theorize the impact of Agile attributes on 

software maintainability and validate the research questions directly.  According to 

Lehman’s software evolution laws:  

1. Systems must be continually adapted to maintain its usability (Law of 

continuing change). 

2. System complexity increases as it evolves making change implementation 

harder (Law of increasing complexity). 

3. System evolution processes tend to show self-regulation and evolvement as 

directed by feedback systems (Law of self-regulation). 

4. System work rate tends to remain constant over system evolution (Law of 

conservation of organizational stability). 

5. Average incremental growth of systems tends to remain constant or decline 

(Law of conservation of familiarity). 

6. System functional capability must be continually increased to maintain 

user/business satisfaction and usability of the system over system’s life cycle 

(Law of continuing growth). 



www.manaraa.com

 

 

67

7. System quality will decline unless it is rigorously adapted to meet changes in 

an operational environment both - business and technical (Law of declining 

quality). 

8. Software system evolution processes are multilevel, multiloop, and multi 

agent feedback systems. (Grubb & Takang, 2003, p. 44) 

Software evolution is inseparable from software maintainability, a key software 

quality attribute that deteriorates with changes that continue to get integrated throughout 

the evolution cycle (Ping, 2010).  Lehman’s laws outline the principles common to all—

small as well as large-size proprietary or E-type software systems—and hence, 

assessment of how ASDM impacts software maintainability is incomplete without 

consideration of this foundational software evolution framework.  Sindhgatta et al. (2010) 

recently evaluated Lehman’s laws of software evolution dealing with continuous change 

and growth, self-regulation and conservation, increasing complexity, and declining 

quality within an Agile-driven project.  The hypotheses of this study were thus guided 

primarily by the existing ASDM literature grounded in the Agile manifesto, software 

maintainability literature, and Lehman’s laws of software evolution. 

Collectively, system theory, resource dependency theory, and Lehman’s software 

evolution framework can guide IT management, ASDM teams, ASDM practitioners, 

software maintenance teams, and the researcher community to elucidate the 

interdependencies with causal links between the ASDM as an approach and software 

maintainability.   



www.manaraa.com

 

 

68

Software Evolution and Maintenance Theory 

M.M. Lehman has been considered the originator and key proponent of software 

evolution and maintenance theory that began in early 1970s.  Grubb and Takang (2003) 

iterated the significance of Lehman’s theory and posited the same as prerequisites and 

underlying essentials before attempting software evolution and maintenance analysis.  

The exploratory analysis from Lehman and Ramil (2002) also concluded that software 

evolution involves programming paradigms, approaches, languages, usage domain, and 

that evolution cannot just be restricted to the programming process artifacts such as 

specifications, designs, and documentation.  The Agile software development model has 

evolved from previous software development models–waterfall and iterative development 

approaches in specific–and this evolution is in alignment with the feedback system 

hypothesis by Lehman (1996,), as well as the law of continuing change (Lehman, 1976).  

Furthermore, all of the software systems evolve over their life cycles, undergoing several 

changes including modifications to their other attributes such as software maintainability.  

With maintenance costs exceeding initial design and development costs (Gibson & Seen, 

1989), software evolution and maintenance laws underscore the greater need of their 

retrospection within the context of the Agile model of software development. 

Lehman’s investigative work spans over 30 years within the software process 

domain that formulated some software evolution laws, later supported by Turski (1996) 

and several other practitioners.  However, this same theory was criticized by Yuen (1981) 

and Lawrence (1982) for its observational as well as rigid nature; these laws of software 



www.manaraa.com

 

 

69

evolution and maintenance when revisited in 1997 confirmed their relevancy within the 

changing landscape of software development engineering.  Most notably, a recent study 

from Sindhgatta et al. (2010) evaluated Lehman’s laws of software evolution that deals 

with continuous change and growth, self-regulation and conservation, increasing software 

complexity, and declining quality within the Agile-driven developed software system.  

 

Fig. 9 Laws of software evolution–The Nineties view.   
 
Note. (IEEE) Retrieved from Lehman, M. M., Ramil, J. F., & Wernick, P. D.  (1997), p. 
21. 

This software evolution theory closely intertwines the research questions in this 

study from various perspectives.  For instance, the law of continuing change (Lehman, 

1974) implicated software system adaptation as a dominant force that in turn strengthens 

continuing growth theory (Lehman, 1980) and furthermore warned about possible 

declination in software quality (Lehman, 1996) in the absence of adaption and 

maintenance.  It is evident in this chain of interrelation of laws that the need of software 



www.manaraa.com

 

 

70

adaptation to the changes and changing environment originates from the quest of 

maintaining higher software quality, improving maintainability, and resultant customer 

satisfaction.  When examining the influence of the Agile model on software 

maintainability and its sub-characteristics, software evolution laws signify the urgency to 

improve maintainability to avoid declining quality (Lehman, 1996).  According to this 

declining quality hypothesis, the software quality will appear to be declining unless these 

systems are rigorously maintained and adapted to environmental changes in which they 

operate.   

Additionally, to attain satisfactory software evolution, the conservation of 

familiarity hypothesis emphasized the development and maintenance team’s mastery over 

the software content and behavior.  This law of software evolution also states that 

excessive growth, however, may impact this familiarity level negatively.  With domain 

knowledge distribution in Agile teams through collective code ownership practice, 

ideally this familiarity and hence the software analyzability, one of the key 

maintainability sub-characteristics should be unchanged.  In reality, however, this quality 

trait may be influenced by other factors outside of ASDM itself.  Additionally, this 5th 

law along with Lehman’s 3rd, 4th, and 8th Laws of self regulation, conservation of 

organizational stability, and feedback systems hypothesize and focus on the stability 

characteristics of software as it grows.  The next section addresses the software evolution 

and maintenance outlook pertaining to ASDM, which primarily stem from the changing 

needs of business domains (user). 



www.manaraa.com

 

 

71

Software Evolution and its Relevance within ASDM 

 The chaotic behavior of the software development process before release is 

attributed mainly to feedback loops, according to the law of the feedback system 

(Lehman, 1996).  As the system stabilizes due to feedback, the ripple effect of the growth 

of a software system going through evolution is evident as hypothesized by Lehman 

(1996).  Within the ASDM-driven software evolution, increasing software stability and 

reducing chaos towards the end of each release is suggestive of the adherence of this law 

given that frequent feedback is an integral part of ASDM. 

 Increasing software complexity is connected to poor software maintainability.  

Lehamn’s 2nd law of evolution postulates that complexity of a software system increases 

as the program evolves unless steps are taken to reduce this complexity.  The complexity 

aspect of software is significantly non-trivial within ASDM as it is addressed through 

several Agile practices such as refactoring and simple design principles. 

For successful software evolution, Hulse et al. (1999) contended that a thorough 

understanding of the architect's intentions about software organization is a must.  They 

further argued that software maintenance costs can be reduced significantly when the 

architecture is well defined and documented.  In another review, Porter (1997) attempted 

to group the maintainability related factors into four distinct groups: product, people, 

process, and task.  He further contended that software complexity and software structure, 

the subgroups of software maintenance category, includes the metrics and programming 

approach, which in turn, influence software understandability, which is often 



www.manaraa.com

 

 

72

synonymously termed as software analyzability.  Secondly, system structure elements are 

the main determinants that explain change implication to software system.  The software 

change and its ripple effect (Ravichandar et al., 2008), software architecture 

considerations and its implications (Jensen et al., 2008), design patterns and software 

language domain, fall into system structure subcategory.  These studies were also touched 

on in the maintainability related discussion in this research study.   

During every software development effort, source code is added, changed and 

removed as a result of the requirement integration.  In turn, the software structure as well 

as execution behavior of the code may have changed after implementation of the code 

changes (Law & Rothermel, 2003; Orso, 2003).  Some code changes will also have a 

long-term impact on the software project that is often difficult to estimate, according to 

Herzig (2010).  He also contended that instability often refers to low quality.  Within the 

software life cycle, software product is expected to withstand storms of changes.  As a 

result, deterioration continues degrading software changeability further with successive 

changes.  The law of increasing entropy or Lehman’s 2nd law states that entropy of 

software, also reflected in its unstructuredness, increases with time unless specific efforts 

are undertaken to maintain or reduce it.  Fowler (2001) advocated simple design and 

refactoring, key practices of ASDM, to address software entropy related concerns.   

When analyzing software development problems in their study, Hanssen et al. 

(2010) argued that code duplication is an unfortunate yet common way of reacting to 

“cognitive overload” originating from poor analyzability of the software (p.).  They 



www.manaraa.com

 

 

73

further contended that the testability and stability of software gets impacted due to size of 

the code and complexity.  Poor test coverage, unstable and inconsistent existing tests 

could potentially impact even changeability, discouraging the developers to change the 

software code with confidence. 

Code reuse approach has its own value, and it is perceived as an expedited avenue 

in some development scenarios.  Although code reuse saves time and cost with saved 

coding efforts, Baldo and Thomas (1996) argued that it may redefine maintenance.  

Porter (1997) contended that ad-hoc changes are relatively inexpensive and are rapidly 

applied, but are likely to degrade the software structure; but, changes that are planned and 

that preserve the structure may not impact the software structure.  When discussing 

change-prone software modules, Harrison (1996) argued that ad-hoc changes may be 

compounded in software modules that frequently change.  Within the context of ASDM, 

changes are not really ad-hoc in their emergence nor fully planned in advance. 

Software changes are entertained and accommodated relatively well in ASDM-

driven development cycles.  However, even successful development projects do not 

necessarily account very well for future maintainability.  According to Castro and 

Mendes-Moreira (1996), the cost and effort spent in software maintenance are the “dues 

of success” (p. 5).  When using program comprehension theories in their case study, Von 

Maurhauser and Vans (1996) suggested that maintenance task type, background or 

exposure of the software application, domain expertise, and language expertise impact 

software maintenance.  Furthermore, Schneberger (1996) posited that with technology 



www.manaraa.com

 

 

74

changes, maintenance bottlenecks can also shift, which is well noted in distributed 

architecture.  The contention is that the ASDM model, including its underlying 

principles, practices, tools, and technologies that support these methodical practices may 

influence the software maintenance and maintainability differently, as well. 

System documentation has been debated within numerous software evolution 

studies.  Tryggeseth (1996), when studying impact of documentation availability on 

maintenance productivity, reported that system-level knowledge has greater impact on 

software maintenance quality when compared to resource programming knowledge.   In 

another controlled experiment, Visaggio (1996) corroborated that the quick fixes indeed 

degraded software structure and were less reliable when compared to iterative 

enhancements.  None of these studies however examined the ASDM approach primarily 

because the Agile model realistically did not begin spreading its roots until early 2001.   

Individual change and its implications for costs and risk comprehension are the 

first step towards developing an outlook towards software evolution and maintenance.  

Benestad et al. (2009) discussed various approaches taken in several other researchers’ 

empirical investigations and highlighted that individual change-specific attributes can be 

alternatively used to assess software evolution and maintenance.  They referred to these 

studies as change-based studies in their extensive literature review targeted to improve 

the understanding of causal factors of cost and risk through identification of change 

attributes.  Lehman’s laws, on the other hand, were formed based upon measurement of 

changed or impacted software components over the release cycle.  The software 



www.manaraa.com

 

 

75

evolution and maintenance theory is here to stay and will continue to inform software 

engineering practitioners, specifically functional within ASDM-driven development 

initiatives.  The next section of the literature review focuses on software maintainability 

and related themes. 

Software Maintainability Themes and Implications 

Software maintainability, according to ISO/IEC 9126-1(2001) is the capability of 

the software systems to be modified.  Maintainability is also defined as “the ease with 

which a software system or component can be modified to correct faults, improve 

performance, or other attributes, or adapt to a changed environment”(IEEE, 1990, p. 

127).  Furthermore, according to the IEEE (1517 -1999) standard, the maintenance 

process is performed to modify existing software and correct a defect or deficiency or to 

adapt the software to comply with new or updated requirements.  The purpose of the 

maintenance processes is to modify, migrate, or retire an existing software application.  

Because the efforts undertaken on software changes and fixes are a major cost driver 

(Hordijk & Wieringa, 2005), software maintainability is the critical quality aspect of the 

software life cycle.  Within the ASDM life cycle, improved software maintainability has 

become a significant capability dimension for IT management.  The stake extends beyond 

Agile practitioners and development project teams. 

Software companies continue to select outsourcing options when addressing their 

software maintenance and support, but mostly view this as a competitive advantage to 

their core business (Ahmad, 2006).  A software maintenance outsourcing discussion is, 



www.manaraa.com

 

 

76

however, mainly out of scope of this study due to the necessity of controlled examination 

of the research question posed in this study.  Chen and Huang (2009) conducted a 

qualitative study wherein they examined the impact of software development problem-

factors on software maintainability.  They reported that software process improvement 

(SPI) is capable of increasing software maintainability level moderately.  Their analysis 

also yielded ranked software development problem factors listing inadequate source code 

comments, obscure documentation, inadequate change related documentation, poor 

traceability, noncompliance and inconsistency to adhere with programming standards, 

continually changing requirements, frequent turnover within active project team, poor 

adherence to programming techniques, and inadequate considerations for software quality 

requirements.  Although some of these factors appear to be relevant to any development 

model in general, this study did not include any Agile project-specific data and fell short 

of building any strong inferences applicable to ASDM. 

The software maintenance phase constitutes several core activities that vary in 

terms of their long-term and short-term impact on software maintainability.  Osborn 

(1985) defined software maintenance as the post deployment activities that are a must to 

maintain the acceptable level of operation of the software system.  He further categorized 

the maintenance into three groups: correcting, enhancing or improving, and perfecting.  

Dekleva (1992), however, criticized these categories, as “too broad classification” (p. 

356). 

  



www.manaraa.com

 

 

77

Table 4:  

Types of Software Maintenance  

Types of software maintenance 

Type Description 

  

Corrective Repair design and programming errors 

  

Adaptive Modify system to environmental changes 

  

Perfective 

Evolve system to solve new problems or take advantage of 

new opportunities 

  

Preventive Safeguard system from future problems 

 Note. Retrieved from Hoffer et al. ,2008, p.564. 

Software Maintenance Decomposition 

The four types of software maintenance, according to Lientz and Swanson (1980), 

are corrective, adaptive, perfective, and preventive maintenance that were further 

normalized internationally in the ISO/IEC 14764 (2006) standard. 

1. The repair of software defects is handled through corrective maintenance.  A 

software defect may be linked to software design errors, logic errors, or 

programming/coding errors, according to Takang and Grubb (1996).  Software design 



www.manaraa.com

 

 

78

errors often occur due to incorrect, incomplete, wrongly communicated changes.  

Software logic errors could result from invalid assumptions, invalid tests, inaccurate 

conclusions, incorrect implementation of design specifications, faulty logic flow, or 

incomplete test of data.  Programming or coding errors are the results of incorrect 

implementation of logic design and incorrect usage of the source code logic.  Software 

defects could also be caused by data processing errors and system performance errors.  

These software errors, commonly referred to as residual errors or software bugs, deviate 

the software from conforming to its originally agreed specifications or requirements.   

A bug reported from end users often initiates corrective maintenance (Coenen & 

Bench-Capon, 1993).  Examples of corrective maintenance include: correcting a failure 

to test for all possible input conditions or a failure to process the specific data type or 

specific record in a file (Martin & McClure, 1983).  In the recent study, Li et al. (2010) 

found that software size and complexity, maintainer’s experience, tool and process 

support, and domain knowledge are the most influential cost drivers of corrective 

maintenance. 

2.  Adaptive maintenance is composed of adapting the existing production 

software to changes in the environment, such as the hardware, or the operating system, or 

newer sub components of software.  The environmental changes could also include 

business rules, government policies, work patterns, and software and hardware operating 

platforms (Takang & Grubb, 1996).  An example of a security policy triggering changes 

in a software system one that includes the data encryption mechanism for data in transit 



www.manaraa.com

 

 

79

and storage.  This change could require the organization and its software systems to make 

significant changes to its software systems to accommodate the encryption requirements 

to comply with security policies.  Other examples are: an implementation of a DBMS or 

database management system for an existing application system, and an adjustment of 

two programs to make them use the same record structures (Martin & McClure, 1983).  

Another example is to include the new business rules in the programming logic in 

response to changes in the business processes to address customer feedback on the longer 

delivery time.  According to McConell (1996), the development team can face a 25% 

change in software requirements during the software development projects. 

3.  Perfective maintenance often handles new or changed user requirements and is 

related to functional enhancements to the software system and changes to improve the 

system’s performance (Van Vliet, 2000).  Software, once deployed successfully, goes 

through several changes during the life cycle, with obvious increases in the number of 

requirements.  This is based on the premise that as the software becomes an essential tool 

for the business organization, the users continue to ask for new cases or functionalities 

well beyond the scope for which the software was initially designed and developed 

(Takang & Grubb, 1996). 

Examples of perfective maintenance include modifying the engineering software 

program to include newly added tool standards and vendor details, adding a new business 

performance report in the operation management dashboard system, adding error 

handling and capture module to make it more support-friendly. 



www.manaraa.com

 

 

80

4.  Preventive maintenance tasks and activities are aimed to enhance the software 

maintainability.  Some of these actions are adding comments in the code, improving the 

modularity of the system, improving the system documentation, and improving the 

database architecture (Van Vliet, 2000).  Over the life cycle, the impact of corrective, 

adaptive, and perfective changes can be seen in the increased system’s complexity 

(Takang & Grubb, 1996).  With these continual changes, software complexity increases, 

reflecting a deteriorating structure.  The preventive maintenance function is targeted to 

maintain or reduce this impact on software.  This work is also referred as preventive 

change (Stafford, 2003).   

Users of a software system could report the symptomatic issues, such as 

performance degradation or non-satisfactory software behavior, which result from a lack 

of preventive maintenance.  The change usually gets initiated from within the software 

maintenance organization in this category, with the intent to improve the software code's 

understandability and reduce the maintenance work in the future (Takang & Grubb, 

1996).  Examples of preventive change include refactoring, restructuring of the program, 

code cleaning and optimization, and updating documentation with the relevant and 

current software specific information.  Stafford (2003) suggested that, among these four 

types of maintenance, corrective maintenance is the only traditional maintenance type.  

The other maintenance types can be considered as software evolution.  The term 

evolution has been used to characterize the growth dynamics of software since the early 

1960s (Chapin et al., 2001), and it is widely used in the software maintenance 



www.manaraa.com

 

 

81

management and practitioner community.  The Journal of Software Maintenance 

appended the term evolution to its journal title to echo this transition (Chapin & Cimitile, 

2001). 

                          

 Figure 10.  Illustration of relationship between types of software change (Retrieved from  
Kunstar and Havlice, 2008). 

 

Software changes, as discussed earlier, were categorized into three classes by 

Basili and Weiss (1984), Lientx et al. (1978), and Swanson (1976) as adaptive, corrective 

and perfective.  Within the Agile development cycle, Cao et al. (2010) argued that 

refactoring practice supports implementation of perfective change.  New requirements 

planned for upcoming iterations fall into the adaptive change class, according to 

Highsmith and Cockburn (2001).  Corrective change prioritization decides their 

implementation order, which is also a function of customer involvement.  A change to the 

recently developed feature in current or previous iteration is also a corrective change 

within the Agile development cycle.  The Agile model thus influences the ease or 

difficulty with which these changes may be implemented.   



www.manaraa.com

 

 

82

Software Quality: Internal and External Characteristics and Subcharacteristics 

This study uses the ISO/IEC 9126 software engineering quality model to examine 

the implication of ASDM on software maintainability.  The ISO 9126 software quality 

model categorizes three distinct, yet related views on software quality:  (a) internal 

quality view, which emphasizes on the software properties that can be measured without 

executing it; (b) external quality view, which emphasizes the software properties that can 

be witnessed during software execution; and (c)  in-use quality view, which emphasizes 

the software properties experienced by varied classes of users during the operation and 

maintenance life cycle stages.  Heitlager et al. (2007) asserted that internal quality 

impacts external quality, which in turn impacts software quality in use.   

Within the ISO/IEC 9126–TR (technical report), the consensual measure of 

metrics exists for evaluating various product quality characteristics and, in specific, TR-

9126-3 includes internal metrics.  For the maintainability characteristic, 16 external and 9 

internal quality measures are defined within the 9126 standard. 

 

Figure 11. Illustration of software quality notion; Heitlager et al. (2007), based on  
ISO/IEC 9126 model of software quality. 
 



www.manaraa.com

 

 

83

In this study, the software maintainability and its four internal sub-characteristics were 

mapped to software code level measures that are discussed to further detail in chapter 3.   

Software Development and Maintainability 

When debating about inclusion of software maintainability into the development 

approach and processes, several researchers favored this reiteration even within modern 

software development methodologies.  Singh and Goel (2007) proposed a model of 

preventive maintenance that outlines life cycle of maintenance request within the 

context–the analysis phase and design and implementation phase.  Being that the 

software maintenance is a microcosm of the software development cycle, as argued by 

Singh and Goel (2007), required considerations pertaining to software maintainability are 

needed during the development phase. 

Huang (2009), in a quantitative study, showed that problem factors in the software 

development phase can negatively impact software maintainability.  Huang further 

suggested that the requirement of software maintainability should be taken into account.  

Furthermore, the associated software problem factors should also be properly dealt with 

when performing analysis, design, and implementation activities during the software 

development phase in order to achieve higher levels of software maintainability.   

Jain et al. (2008) posited that the recent exponential development and growth of 

technology and increase in user demands has resulted in an increase of complexity in the 

systems integration and development process.  Complexity in this context, is “the degree 

to which a system or system component has a design or implementation difficulty 



www.manaraa.com

 

 

84

associated to understandability, and verification” (IEEE, 1990, p. 46).  Complexity, 

according to Evans and Marciniak (1987), is “the degree of complication of a system or 

system component determined by the number, intricacy of interfaces, the number and 

intricacy of conditional branches within the program, the degree of usage of nesting, and 

the types of data structures” (p.33).  Ravichandar et al. (2008) argued that a software 

system’s complexity increases the susceptibility to change with given dynamic landscape 

of business, technology, and user needs.  They further examined the ripple effect of needs 

change and found that capabilities-based design improved the change-tolerance of the 

system with volatile needs. 

ASDM focuses on delivering working software or versions through iteration-

driven approaches.  Hanssen et al. (2010) argued that this focus coupled with high 

velocity could negatively impact the quality of this delivered software at the end of the 

iteration.  This could in turn demand additional efforts before the release when the 

software is tested fully.  The software entropy, according to Hanssen et al., however, 

grows, from release to release. 

Development Model and Software Maintainability Correlation and Research 

Method 

The true experimental setup to assess the impact of identified ASDM on software 

maintainability is an expensive and unrealistic quest.  This limitation forced this research 

design to be based on post facto or already existing data.  Prolonged engagement of 

resources for a longer time is not practical within a business organizational context. 



www.manaraa.com

 

 

85

To demystify the ongoing software maintainability related challenges in various 

IT organizations that are adapting or have successfully adopted the Agile model over the 

last decade or so; laws of software evolution by Lehman (1996) and Belady (1976) 

provide much needed theoretical guidance and relevant lenses to study the Agile-driven 

software evolution.  These laws are mostly applicable to Sindhgatta et al. (2010), who 

analyzed the software evolution in an Agile development case study–in a specific scrum-

driven development project within the framework of Lehman’s laws relevant to 

continuous change and growth, self-regulation and conservation, increasing complexity, 

and declining quality.  Most evolution and maintenance laws were reported to be 

followed by the Agile-driven system in this unique and only study so far that attempted to 

validate the Lehman’s Laws within Agile dynamics.  Rico (2008) studied the relationship 

between Agile factors and website quality in a qualitative case study, and suggested that 

iterative development and customer feedback related to website quality.  In another 

quantitative study, Hanssen et al. (2010) examined how the maintainability of the system 

could degrade with continuous change over time, showing a negative relationship 

between agility and software entropy.  Lastly, Olague et al. (2006), in their quantitative 

research design, assessed software maintainability, but with intent to examine the utility 

of information theory-based metrics within the Agile-driven approach. 

Within a systematic review of all empirical studies of Agile software development 

conducted by Dyba and Dingsoyr (2008) using existing data up to and including 2005, 

they found 36 primary research studies, with only 4 studies related to software quality.  



www.manaraa.com

 

 

86

Furthermore, none of these 4 studies were focused on software maintainability, and none 

were conducted within a seasoned Agile team composition setting or environment.  

Instead, the product quality was compared between traditional and Agile-driven 

approaches within experimental settings that were not fully integrated with th eAgile 

approach.  According to Huo et al. (2004), a software quality comparison between Agile 

and traditional approaches such as waterfall, is not only difficult, but an unrealistic 

endeavor due to varying development conditions and cost.  Additionally, the accuracy of 

the result in such experimental research studies may not reveal the causal links between 

development approach and software quality characteristics including maintainability. 

Notwithstanding, many studies on the Agile methodologies and individual Agile 

practices have focused on their effectiveness within Agile-driven development projects 

(Cao et al., 2010; Erdogmus & Williams, 2003; Williams & Kessler, 2000) and not their 

impact on maintainability related quality characteristics.  On the other hand, studies 

employing Lehman’s software evolution framework, such as the study by Sindhgatta et 

al. (2010), have not studied maintainability in their assessment of software quality within 

a specified software life cycle.  As a result, this study transcended the void of studies 

assessing the influence of development model on software maintainability. 

This study addressed this paucity of research analyzing software maintainability 

using the tenets of Lehman’s Software evolution and maintenance theory.  The next 

chapter will present a method to do so that follows the ISO/IEC 9000/9126 (2003) 

software quality standard as well as the approach followed by Kanepolious et al. (2010) 



www.manaraa.com

 

 

87

to measure software analyzability, changeability, stability, and testability across multiple 

software releases driven by ASDM.   

The literature reviewed has highlighted that the quasi-experimental as well as 

correlation research as the predominant research method employed to measure the 

direction and the extent to which ASDM practices impacts software quality attributes and 

software development project success.  Quasi experimental research has been used 

because it allows for the measurement to assess the impact of the treatment on the 

selected dependent group both before and after a treatment of the independent variable.  

In this case, the impact or influence was the changes in maintainability and its sub-

characteristics.  Chapter 3 addresses the research method that was used to assess the 

impact of ASDM on software maintainability and its sub-characteristics. 

Metrics and Related Research 

Software metrics have been widely used in software quality assessment within 

software engineering domain (Boehm, Brown, & Lipow, 1976).  A literature search 

related to object oriented metrics resulted with some key studies from Ohlsson et al. 

(2001), Alshayeb and Li (2003), Gyimothy et al. (2005), Basili et al. (1996), Tsantalis et 

al.(2005), Nakatani and Tamai (1997), Mens and Demeyer (2001), Chidamber and 

Kemerer (1996), and Olague et al. (2006).     

Ohlsson et al., in their 2001 case study, tracked system evolution to identify 

decaying components to avoid software brittleness.  They used defect fix reports, degree 

of interaction, total number of changes to the source files, unique number of files fixed in 



www.manaraa.com

 

 

88

a specific component, average number of changes in source files, and growth in source 

and executable files.  The software, however, was developed using a non-object oriented 

approach.  Alshayeb and Li (2003), in their work related to design efforts prediction 

within iterative software development approach, used weighted method count (WMC), 

depth of inheritance tree (DIT), lack of cohesion of methods (LCOM), number of local 

methods (NLM), coupling though abstract data type (CTA), and coupling through 

message passing (CTM).  Gyimothy et al. (2005) in part attempted to revalidate Basili et 

al.’s (1996) findings related to the fault-proneness ability of their metrics.  The Basili et 

al. (1996) study focused on the Chidamber and Kemerer metrics - WMC, DIT, RFC, 

NOC, CBO, LCOM, and LCOMN including LOC metric.  When studying the 

predictability based on the probability of change, Tsantalis et al.(2005) used Chidamber 

and Kemerer’s object oriented class metrics.   

Nakatani and Tami (1997) also studied the evolution patterns of multiple software 

systems using Chidamber and Kemerer and the LOC metrics in an attempt to 

comprehend and explain the evolution of boundary, domain, and common class for 

iterative software development processes.  Mens and Demeyer (2001) identified 

“predictive and retrospective software evolution metrics” and their benefits in software 

quality evaluation and assessment (p.14). McCabe’s Cyclomatic Complexity (Lorenz & 

Kidd, 1994; McCabe & Watson, 1994) is another widely accepted complexity-related 

metric that is being used in this study.   



www.manaraa.com

 

 

89

In addition, Subramanyam and Krishnan (2003) also studied single, but relatively 

large software versions using the Chidamber and Kemerer metrics suite and the LOC 

metric.  They contended that there is a high correlation between object-oriented metrics 

and their usefulness as indicators of software quality.  Lastly, Olague (2007), when 

examining fault prediction and ability of several object-oriented metrics, reported that 

object-oriented metrics could be used within the Agile-driven software development 

approach beyond just the assessment of initial quality.  They successfully corroborated 

their argument by using the set of object-oriented metrics within the Agile-driven 

software system study.  Because highly iterative or ASDM-driven software increases in 

size and capability through every iteration and release cycle, usage of object-oriented 

measures for subsequent releases remains valid.  This study used several existing 

measures tabulated in Table 5 as shown. 

Table 5 

Metrics Used in this Study and Some Key Studies that Utilized These Measures 

Metrics Key studies utilizing these metrics 

Cyclomatic Complexity (McCabe) Chidamber & Kemerer (1994), Kanellopoulos et al.(2010) 

Coupling Between Objects (CBO) Chidamber, Darcy, Kemerer (1998), Harrison, Counsell, Nithi (2006), 

Krishnapriya & Ramar (2010) 

Unit Size Kanellopoulos (2008), Heitlager (2007) 

Test Coverage Janzen, D.C.  (2006), Heitlager (2007), George & Williams (2004) 

ASSERT count  Janzen, D.C.  (2006), Heitlager (2007) 

Duplication Kanellopoulos (2008), Heitlager (2007),Kanellopoulos et al.(2010) 

 



www.manaraa.com

 

 

90

Software Maintainability Decomposition 

Software maintainability is defined as, the capability of the software systems to be 

modified (ISO/IEC 9126-1, 2003) Furthermore, these modifications span corrections, 

adaptations, or improvements to changes originating in the environment (outside of the 

software) as well as in requirements and functional specifications (Chen & Huang, 2009). 

Within the context of this research study and underlying research question, 

software analyzability according to ISO/IEC 9126-1 (2003) is the software system’s 

capability to allow identification for parts that should be modified.  In other words, it is a 

software characteristic that reflects how easy it is to diagnose the system for deficiencies 

or to identify the parts that need to be modified (Chen & Huang, 2008; Heitlager et al., 

2007).    

Software changeability is the capability to enable a specified modification to 

software system to be implemented, according to ISO/IEC 9126-1 (2003).  It is another 

internal software quality sub-characteristic that is indicative of how easy it is to make 

software adaptations (Chen & Huang, 2008; Heitlager et al., 2007) or specified 

modification. 

According to the same IEC 9126 standard, software stability is defined as the 

capability of the software product to avoid unexpected impact from modifications of the 

software.  This sub-characteristic of software maintainability informs how easy it is to 

keep the system in a consistent state during modification.  In short, stability shows how 

capable software is to remain stable after being modified (ISO/IEC 9126-1, 2003). 



www.manaraa.com

 

 

91

Lastly, ISO/IEC 9126-1 (2003) defined software testability as, the capability of 

the software to enable modified software to be tested.  Alternatively, this fourth 

independent variable of this study represent that how easy is to test the system after the 

implementation of modification.  

Figure 12. ISO/IEC 9000/9126 Software Quality model’s different views. 

The suggested metrics by ISO/IEC 900/9126 for software maintainability and its 

sub-characteristics are change implementation elapse time and change impact for 

changeability, activity recording for analyzability, and re-test efficiency for testability.  

However, these metrics are founded on the observation of the interaction of software and 

its environment that includes the software developer, maintainers, analysts, and testers, 

but not based on direct observation of the software product, as critiqued by Heitlager et 

al. (2007).  They further argued that these measures are based on comparison of the 

software with its specifications that are vulnerable to incompleteness, invalidity, 

obsoleteness, and incorrectness.  What follows next is the relevant, applicable, and 



www.manaraa.com

 

 

92

already used set of metrics based on the direct observation of software application as 

indicated in Figure 12 showing software internal quality attributes.   

Table 6 

Correlations Between Software Maintainability Sub-Characteristics and Software  
Attributes-Adopted from Hegedus et al. (2010). 
 

  Analyzability Changeability Stability Testability 
Complexity n.a (-) Negative (-) Negative (-) Negative 

Coupling (-) Negative (-) Negative (-) Negative (-) Negative 

Size (-) Negative (-) Negative (-) Negative (-) Negative 

Clones (-) Negative (-) Negative n.a. n.a. 

Unit Test Effort (+) Positive n.a. (+) Positive (+) Positive 

 

 Much research related to software maintainability has occurred over last 30 

years, touching its multifaceted domain.  Riaz et al. (2009) conducted extensive 

systematic review on software maintainability prediction and metrics based on 15 key 

and relevant studies.  Their findings showed that software size, software complexity, and 

software coupling collected at the source code itself were the most commonly used 

predictors of software maintainability.  Hegedus et al. (2010) summarized the 

correlations between software system properties and software maintainability-related 

quality sub-characteristics as shown in Table 6.   

This data is extracted based on several other experiments conducted by Basil et al. 

(1996), Yu et al. (2002), Subramanyan and Krishnan (2003), Gyimothy (2005), Olague et 

al. (2007), and Siket (2010) in the area of system attributes such as complexity, coupling, 

and size.  In addition to these properties and underlying measures underscored by Riaz et 



www.manaraa.com

 

 

93

al. (2009) and Hegedus et al. (2010), this study incorporates additional measures used by 

Kanellopoulos et al. (2008, 2010) pertaining to software stability and testability sub-

variables. 

Lastly, Yu et al. (2002), Subramanyan and Krishnan (2003), Gyimothy et al. 

(2005), and Olague et al. (2007) also found that software complexity, coupling, and size 

were positively correlated to fault proneness, whereas, unit test effort was negatively 

correlated to it.  Thus, within the context of ASDM, the independent variable of this 

study, Riaz et al.’s systematic review and Kanellopoulos et al.’s studies provided key 

foundational grid pertaining to chapter 3. 

Analytical Hierarchy Process (AHP) 

The Analytic Hierarchy Process (AHP) is a comprehensive framework that deals 

with the intuitive, the rational, and the irrational when making multi-criterion or multi-

actor decisions with and without certainty for multiple alternatives that develop ratio 

scales (Harker & Vargas,1987).  The process decomposes a problem into smaller 

elements and then applies pair-wise comparison judgments to develop priorities in each 

hierarchy. 

AHP is a common decision technique in the field of decision science (Liao & Lin, 

2009).  Paired comparisons within AHP allow the researchers to seek answers to 

measurement-oriented scientific questions (Saaty, 1997).  Arrington (1984) referred to 

AHP as a “paramorphic technique” (p. 298) that he further contended could be used to 

construct scales of attributes that drive preferences for certain items over others.  



www.manaraa.com

 

 

94

Kanellopolus (2008) used this process in his recent study when validating data mining 

model and evaluated software maintainability characteristics.  Thus, within the context of 

evaluation of software maintainability and its sub-characteristics with a given set of 

measures, AHP is the right first step towards the assessment of influence of ASDM.   

In this review of software evolution and maintenance, and its relationship to 

maintainability and its sub-characteristics, we see that the non-optimal alignment 

between development model and maintainability objectives is not just an IT 

organizational concern, but also a socially significant issue.  The literature has pointed to 

three major domains that have facilitated software maintenance and ASDM relevant 

discussions: ASDM model and its key attributes, Lehman’s software evolution theory, 

and software maintainability. 

Research Methodology Preview 

The core purpose of this study was to investigate the influence of the Agile 

software development model on resulting software maintainability characteristics as 

noted earlier.  The nature of the research problem drove the choice or selection of specific 

research methods (Leedy & Ormrod, 2001; Singelton & Straits, 2005).  The experimental 

design methodology is well suited for the studies of causality and impact assessment, 

including before and after assessment (Halat, 2007; Singelton & Straits, 2005; Vogt, 

2007).  Creswell (2003) observed that a quantitative approach integrates the examination 

of hypotheses and questions using measurements applied to collected data.  Within true 

experimental design, the inferential gravity is high, therefore allowing the researcher to 



www.manaraa.com

 

 

95

control the experimental variables to greater extent.  This control further bolstered the 

validity, both internal and external.   

The primary requirements for conducting a true experiment, however, includes 

discrete manipulation of an independent variable, measurement of a dependent variable 

with single or multiple groups, and steady environmental conditions across groups under 

the investigation (Changeau, 2004; Creswell, 2003; Singelton & Straits, 2005).  

Conducting true experimental conditions may often be an unrealistic, expensive, and 

impractical venture specifically within software development projects within IT.  

Furthermore, IT researchers (Dyba & Dingsoyr, 2008) argued about the strength of 

internal validity of the experiments that are conducted using unqualified participant such 

as students, and within laboratory settings specifically within Agile and software quality-

related studies.  Vogt (2007) warned that when choosing specific design, it is critical to 

evaluate the design strengths and weakness including associated costs and benefits. 

When examining existing or post facto data, researchers (Creswell, 2003;Vogt, 

2007) acknowledged the lack of control limiting random assignment.  However, within 

the field setting of mature software development projects driven by the Agile model, the 

benefit is the retrieval of realistic data for the analysis with high possibility of the 

generalization of the outcomes.  A good experiment should pave the way for better 

understanding of potential causal and influential relationships between variables in a real-

life setting.  Within experimental treatment, Singleton and Straits (2005) contended that 

the challenge is in the ability to separate and examine independent variable treatment 



www.manaraa.com

 

 

96

apart from the effects of extraneous variables.  Research design has a direct sway upon 

efforts to mitigate threats to external and internal validity (Trochim, 2001).  When 

analyzing the existing or post facto data within quasi-experimental setup, the researcher 

needs to be selective about the groups, and this selection could benefit from the existing 

and previous literature.   

This purposive selection of subject with well-defined criteria improves the 

internal validity further.  Internal validity is an important factor within quasi-

experimental design.  Experiments with high internal validity suggest strong inferences 

when interpreting potential causality of relationships or influence of treatment on the 

dependent variables.  The effects of spurious variables are isolated and controlled 

(Singleton & Straits, 2005) in such cases.  One of the potential threats to internal validity 

is the researcher’s bias, as cautioned by Trochim (2001).  A diffusion threat, on the other 

hand, within the research setting utilizing past or existing data, is minimal to none.    

External validity is “the degree to which the conclusions in your study would hold 

for other persons in other places and at other times” (Trochim, 2001, p. 42).   This study 

will be conducted within an identified U.S.-based IT organization with stable and mature 

Agile model practicing teams.  The external validity of this study was thus limited due to 

the constraints of limited available data from the software development organizations 

within business corporations. 

This study integrated AHP within data analysis steps.  This technique integrates 

both qualitative and quantitative dimensions of decision (Saaty, 1980) and enriches the 



www.manaraa.com

 

 

97

quality of analysis.  Previous similar studies (Kanellopolious, 2008; Miranda, 2001) used 

this technique, which elicits subjective judgment from the domain experts using the 

scoring method as highlighted in Appendix B.  Furthermore, as indicated earlier, this 

study analyzed the time series data and measured the variation or changes in software 

maintainability, analyzability, changeability, stability, and testability of software systems 

developed using the Agile model.  Repeated measure design is considered statistically 

powerful because it controls for potential sources of variability, according to Aczel 

(2006).  Regression analysis within subjects will be used when analyzing the data.  Note 

that subjects in this study are correlated samples and stayed the same before and after the 

measurement.  This study essentially involved multiple observations over time for the 

same software system. 

Regression analysis was conducted on the collected data for maintainability 

characteristics to measure the changes in maintainability at every release point.  

Regression analysis is a hypotheses-testing technique that can be used to understand the 

significance and causal impact of the independent variable in the study (Larson & Farber, 

2006).  For this research, updated values of the dependent variables (SA, SC, SS, and ST) 

at every iteration were measured.  The primary data analysis was presented with the 

results from regression analysis technique.  SPSS and Minitab, the statistical software 

tools, were used to perform the regression analysis.  Four research questions and four 

hypotheses statements guided the study.  Hypothesis testing led to the determination of 



www.manaraa.com

 

 

98

the impact of ASDM on maintainability characteristics and also answered the research 

questions of this study. 

Chapter Summary 

This chapter highlighted literature that reiterates the concern of IT management 

related to higher software maintenance costs.  The literature also suggested that although 

software maintenance continues to gain more notoriety, the Agile software development 

model as a modern software development methodology may be positioned to influence 

software maintainability and its sub-characteristics: analyzability, changeability, stability, 

and testability.  There are ongoing debates and concerns about applicability of Agile 

within complex development projects and its long term implications within software life 

cycle, specifically in the post-deployment phase.  ASDM benefits the organizations by 

delivering business value earlier; however, the literature discussed in this chapter clearly 

substantiated the need to examine its impact on software maintainability by highlighting 

this current gap.  The lack of maintainability considerations in the development stage has 

been argued to be a significant detriment to the software quality, resulting into higher 

software maintenance cost, which further impacts the core organization’s revenue.  

Previous research found that ASDM continues to extend its adoption with several key 

underlying practices influencing software delivery, complexity, development 

productivity, cost of development, design simplicity, as well other software quality 

processes. 



www.manaraa.com

 

 

99

The literature uncovered that a plausible analysis for the software maintainability 

particularly within the context of the Agile-driven software development life cycle can be 

explained by the set of Lehman’s software evolution framework.  With business agility 

becoming a norm, this researcher’s contention is that ASDM may be an influential 

development approach to demystify the software maintainability puzzle and probably 

leverage its methodical practices to attain higher software maintainability.  It could be 

possible for Agile practitioners, operation and maintenance programmers, as well as IT 

management that is struggling to cap the software maintenance cost, to construct more 

effective alignment between ASDM and maintainability objectives if the nature of 

influence is understood between ASDM and software maintainability related attributes. 

To effectively assess how software maintainability impact ASDM, the next 

chapter presents a research design for determining whether and how ASDM model 

impacts software maintainability, as argued by Kajko-Mattson et al. (2006), and in turn 

influences software analyzability, software changeability, software stability, and software 

testability.  A critical assumption of this study is the assertion by Lehamn and Belady 

(1976) and Lehman (1980,1996) that software evolution and maintenance laws govern 

the software life cycle and influence the critical attributes such as growth, complexity, 

entropy, and maintainability.  Another assumption about ASDM is that the model adheres 

to the Agile manifesto (2001) and underlying Agile principles.  In chapter 3, a detailed 

description is provided that identifies the research design, methodology, and its rationale 

to assess the impact of ASDM on software maintainability sub-characteristics through 



www.manaraa.com

 

 

100

source code property measurement.  The chapter also presented data selection 

methodology, along with a detailed description for the operating measures for dependent 

variables and analysis process.  Particular attention is given to simplified explication on 

how this study’s research design align with current design approaches employed in 

similar studies with relevance to foundational concerns related to software 

maintainability. 

  



www.manaraa.com

 

 

101

Chapter 3: Methodology 

In this chapter, the research method employed is explored to examine the impact 

of ASDM on software maintainability for the software applications that are being 

developed within a U.S.-based technology manufacturing organization over the last 2 

years.  More specifically, the chapter addresses the questions related to the extent ASDM 

impact software maintainability: what are the changes to software analyzability, software 

changeability, software stability, and software testability, and hence, overall software 

maintainability, if any?  First, the research design is presented along with a restatement of 

the research questions and hypotheses.  Next, the research setting and case study data are 

addressed as well as the instrumentation and materials used in the study.  The chapter 

ends with a discussion of how the data was collected and analyzed. 

Research Design and Approach 

The approach employed in this study is post facto quasi-experimental quantitative 

design, which involved developing a hypothesis that points to the impact of the 

independent variable on dependent variables (Creswell, 2009).  Quantitative research was 

appropriate for this study because it has been used on numerous occasions to assess the 

impact of the treatment on the selected group both before and after a treatment.  It also 

enabled me to statistically interpret results, measure the direction of influence and 

changes in dependent variables, in this case, software maintainability and related 

subcharacteristics: analyzability, changeability, stability, and testability.  Some of the 

similar studies that have employed a quantitative research approach include Rico (2008), 



www.manaraa.com

 

 

102

Nair et al. (2010), and Kanellopoulos et al. (2010).  This design was applied on existing 

data collected from a U.S. based technology manufacturing company’s software 

development and maintenance organization.   

This time series quasi-experimental study allowed me to explain the impact of the 

Agile model on software maintainability characteristics—analyzability, changeability, 

stability, and testability—measured while controlling for software development team 

members’ participation in an Agile-driven project, software project management 

leadership stability, and technology platform.  The meta-analysis study conducted by 

Dyba and Dingsoyr (2008) underscored the need of quantitative research applied to real-

life Agile software development cases.  Their review however, concluded with very few 

specific studies (Ilieva et al., 2004; Layman et al., 2004; Wellington et al., 2003) that 

compared the software quality attributes, software defects, and external and internal 

quality measures between Agile-driven software systems and non-Agile software.   

Furthermore, several researchers have used quantitative models employing both 

cross-sectional and time-series designs to understand and evaluate the suitability and 

validity of maintainability related measures within a software system developed using 

ASDM.  These researchers include Olague et al. (2006), Abrahamsson and Koskela 

(2004), and Souleles (1999).  As noted previously, this study involved an examination of 

the implications of ASDM on maintainability characteristic of software: analyzability, 

changeability, stability, and testability using the software’s source code measures as they 

reflect internal design quality.  Earlier researchers (Kafura & Reedy, 1987; Lewis & 



www.manaraa.com

 

 

103

Henry, 1989) found a link between the use of software quality metrics and efforts of 

software maintenance and that software quality metrics were found to be valuable 

indicators in the quantitative assessment of software maintainability.  Recently, Kozlov et 

al.  (2008), in correlation analysis study, reported that knowledge about the relationships 

between internal software quality-related attributes and software maintainability can be 

used as a foundation to address and improve software maintainability during earlier 

stages of the software development process. 

As indicated in the literature review summary, this study would fill in the gap 

where the impact of ASDM on software analyzability, changeability, stability, and 

testability–four key maintainability characteristics representing quality indicators of the 

software–have not been examined with empirical data and with applicable internal 

quality measures.  These internal quality characteristics in turn have direct influence on 

the software maintenance efforts, associated cost, and overall IT effectiveness.  To do so, 

the following key research question was addressed: To what extent, if any, does ASDM 

impact the software analyzability, changeability, stability, and testability characteristics? 

The software analyzability, changeability, stability, and testability of the software are 

particularly important to software maintainability aspect within ASDM-driven projects in 

which the entire lifecycle of the development project can be considered maintenance 

(Beck, 2002).   

This study utilized the following key research elements based on this discussion: 



www.manaraa.com

 

 

104

1. Concept: Measuring the impact of ASDM operationalized using TDD, REFR, 

and CI on software maintainability. 

2. Dependent variables: Software analyzability, software changeability, software 

stability, and software testability.  Additionally, software maintainability was 

measured as sum of weighted average of these subcharacteristics that 

constitute it. 

3. Independent variables: ASDM is characterized by three key variables: TDD, 

measured in percentage of test code created in each iteration; Refactoring, 

measured in percentage of classes with Cyclomatic complexity higher than 21; 

and CI or continuous integration is a count of a successful build during each 

development iteration.  Each iteration is typically a week-long development 

cycle in the XP programming approach. 

4. Control variables: Agile software development team size, experience of the 

Agile programmers within the Agile development team, and software 

iterations developed using at least 10 or more Agile practices as identified in 

Table A1 in appendix A, serves as control variables.  Being that this is a post 

facto analysis based on existing data, these confounding variables also served 

as software system selection criteria as tabulated in Table 7.  It was ensured 

that only software system data that has same development team size, 

experience, and adherence to 10 or more agile practices throughout the 

development project was included in the data analysis.   



www.manaraa.com

 

 

105

5. Unit of analysis: This study analyzed selected software source code attributes 

such as complexity, coupling, unit testing efforts, and duplication of the 

software system developed using object oriented programming language: C#.  

The source code attributes are also tabulated in Table 13.   

Justification for Research Design 

The primary purpose of research conducted by Olague et al. (2006) was to 

examine software stability subcharacteristics of software maintainability, high level 

characteristics in software developed using a highly iterative or agile process, but with a 

core focus on the utility of information theory-based metrics to measure stability.  

Besides the software stability measurement, this study additionally measured three code 

quality indicators: software analyzability, changeability, and testability using the 

ISO/IEC 9126 standard and the similar methodology used by Kanellopoulos (2010).  

Quantitative research design is appropriate because the source data of this study will be 

the source code properties for the maintainability assessment of the software systems 

designed using the Agile model within U.S.-based organization.  The internal data about 

software systems from single technology manufacturing organization is a valid data 

source because it offered the same group of software systems that were touched 

consistently by the same ASDM developers or resources, tools, and seasoned business 

processes followed in Agile projects.  Furthermore, it allows for the stream of 

measurement of changes in software analyzability (SA), changeability (SC), stability 

(SS), and testability (ST), the four main software maintainability related 



www.manaraa.com

 

 

106

subcharacteristics that are dependent variables in this study.  ASDM was also measured 

in terms of its key characteristics as TDD, Refactoring, and CI. 

As this available data is post facto in nature, the ability to test the impact of 

ASDM on incremental changes in software SA, SC, SS, and ST was an involved analysis.  

This difficulty arose because incremental change analysis over series of time interval 

would require multiple maintainability measurement snapshots to determine whether 

ASDM variables (TDD, Refactoring, and CI) have impacted software SA, SC, SS, and 

ST across the Agile evolution.  A longitudinal design, on the other hand, may suffer from 

participant attrition (Ahern & Brocque, 2005; Creswell, 2002), therefore obscuring the 

true intended ASDM impact.  This study analyzed  Agile iterations during the specific 

period of time chartered by a well-governed project. 

Despite the shortcomings of a quasi-experimental, time series design that is 

characterized with time series measurement after every weekly iteration, this method 

provided the most appropriate design approach to measure the impact of ASDM-related 

variables on changes in software SA, SC, SS, and ST.  These changes were measured by 

several sets of known metrics and by conducting regression analysis against all the values 

collected at every iteration of ASDM driven software.  To reiterate, Agile development 

projects integrate software maintenance into the subsequent iterations (Beck, 2000), and 

all the iterations after the initial release essentially fall into maintenance stage of the 

development cycle (Stafford, 2003). 



www.manaraa.com

 

 

107

Finally, this quasi-experimental with case study data design is warranted because 

it is the most commonly used when investigating the impact of an analysis-related 

question with the quantitative nature of data being collected.  As revealed in the literature 

review, many prior studies that have employed quantitative design approach being the 

actual data is ordinal measured value of source code properties for each maintainability 

subcharacteristic.  This study, on the contrary, used actual discrete data about the source 

code as a building block of the measurement.  In addition, a unique feature of the data 

related to the source code attributes in this study is that it allowed  to integrate the 

software application expert’s additional subjectivity using AHP in a quantitative manner.   

Case Data and Selection Procedures 

A software system was selected for this study with purposive selection approach 

from the specific IT organization’s software applications drawn from the 2009 to 2011 

source code repository.  The rationale for the selection of the data from the same 

organization was that these data sets aligned well with the research goal in terms of a 

stable resource team that worked on these Agile projects, and well controlled ASDM 

practice adherence, and availability of source code for analysis.  This source code data set 

for selected software application derived from internal business needs of this 

organization, administered by the internal IT organization’s software development and 

operation group.   

The information gathered from this purposive selection of data sets is intended to 

be representative of the other organizations that adopted ASDM and matured over the last 



www.manaraa.com

 

 

108

5 years in similar settings in various other IT organizations.  To ensure this, the study 

collected data based on specific software development groups within an IT organization 

that adopted ASDM around 2005, trained internally its software development team on 

Agile methodologies, as well as continually maintained the Agile-consistent business 

processes to manage the development projects during these times.  The source code 

repository was accessed for the information of the selected software application 

developed from 2009 to 2011.  Although most other studies have focused on the analysis 

of single-version assessment or the release of software application at the end of the 

project, the research question in this study directed the focus on empirical impact 

assessment of ASDM-driven software application, which is characterized with multiple 

versions created through Agile development approach. 

This software system was selected for its availability of data from number of 

iterative revisions, with consistent adherence to ASDM models, both from technical 

(XP), and project management (Scrum) perspective.  System A was implemented with 

Microsoft .NET technology, programmed in C# (C Sharp) to be able to qualify as valid 

case data.  System A-related version changes after every iteration through all underlying 

iteration cycles were analyzed.  The development of System A also met all of the 12 

Agile principles augmented by Agile Alliance supplemented by matured and experienced 

Agile development team.  Their alignment with ASDM and relative data was tabulated 

below showing number of Agile developers, their experience with Agile and overall s/w 

development, and Agile practices followed during the development.  



www.manaraa.com

 

 

109

Table 7 

Software System Selection Criteria 

Key Criteria or Control 

Variables 
Software system  specific qualifying data 

Development Paradigm  Object Oriented 

Total Developers  >2 

ASDM Experience in Years >5 

ASDM practices followed  10-12 

 

The selected system continuously delivered revisions with changing requirements 

generated from well connected internal customers, released and deployed using 

automated tools, unit testing, TDD, refactoring, regression testing, pair programming, 

technologically well connected teams within the United States.  Physically, the co-

location of developers, customers, and other resources within project were not followed 

for practical reasons for this project, but the IT technologies such as live-meeting, 

teleconferencing, and desktop sharing compensated for its need.   

  



www.manaraa.com

 

 

110

Table 8 

Software System: Sample Data Collection Sheet Example 

Software System - A Data Set           

       

Version 1.1 1.2 1.3 1.4 1.5 ...1.60 

Cyclomatic Complexity             

Coupling between objects             

Code Duplication/Cloning       

Unit Size         

Assert count/Class         

Unit Testing         

 

Case Data Set Details 

Software system related enhancements should also mainly be triggered by user 

requirements, software defects, and new defects resulting from code integration through 

all the iteration.  Unit testing, user acceptance testing, and regression testing with heavy 

reliance on continuous user feedback are performed on System A versions prior to 

production release.  The change log for each version should be available along with post 

release reported incidents tracked and guided by ITIL operation framework; however, 

this data will not be included in the analysis.  Note that the research question in this study 

is guided by ISO/IEC 9126 model’s internal quality view and source code assessment is 



www.manaraa.com

 

 

111

at the core of the research method to attain the objective of this study.  In addition to 

actual meta-data collection from the source code repository, the ASDM expert’s 

subjective judgment was elicited using AHP process.  Appendices A, B, and C simplify 

this data collection process. 

On the independent variable or ASDM side, three key variables were 

operationalized as discussed below.  TDD has been widely examined within the Agile 

community.  Within industrial settings, researchers found improved test coverage (Bhat 

& Nagappan, 2006), reduced fault rates (Damn et al., 2005), and faster defect fixing (Lui 

& Chan, 2004).  There is no study currently found that relates or attempts to examine its 

impact on software maintainability characteristics.   

Secondly, the effect of refactoring on code quality itself has widely been studied 

(Khomh, Penta, & Gueheneuc, 2009; Shrivastava & Shrivastava, 2008); however, there 

exists a single study conducted by Wendorff (2001) that assessed the impact of 

refactoring on software maintainability.  With this given void in research, this study 

included TDD as one of the key independent variables that signify the ASDM model.  

The complex classes are typically worked on during refactoring efforts developers take in 

all iteration, so the direct change in the complexity of the complex classes are evident in 

each iteration.  Percentage of classes with cyclomatic complexity higher than 20 were 

measured for complex classes to measure refactoring efforts.  The log entries made by the 

developers within the source code repository were not used as a measure because it may 



www.manaraa.com

 

 

112

be the case that developers actually did the refactoring but failed to add an entry in the 

log.   

Lastly, CI is also one of the selected independent variables in this study.  CI 

strengthens the confidence of Agile teams in their code during the development phase on 

daily basis as they see their code succeeding the integration testing.   As the development 

process progresses, the Agile team builds and integrate its code using automated tools 

and assesses the initial quality multiple times throughout the iteration cycles.  

Compilation and unit testing is part of this essential technique that can be operationalized 

by capturing the successful CI instances throughout the iteration.  This study used simple 

measure of count of number of successful builds or integration per iteration cycle that 

was mined through the log history of the CI tool. 

Confidentiality 

The data analyzed in this study essentially is meta-data or set of internal software 

quality metrics yielding the numerical numbers related to dependent variable: 

maintainability and its four subcharacteristics also measured separately of the actual data, 

that is source code of the software system developed using ASDM.  The confidentiality 

of this source code data of software system relied on the source code control related 

procedures and security controls that are in place and managed by the organization’s IT 

department with clear accountable resources during the collection and analysis process.   

Permission to use the identified IT organization and ASDM experts was given by 

the selected organizational management.  All data was presented in a way that prevents 



www.manaraa.com

 

 

113

determination of origin.  This included all documented evidence and AHP scoring 

responses.  An AHP scoring process introduction was presented to an ASDM expert 

describing the purpose and assurance of confidentiality of their scoring of the system.  

The participant was also given an opportunity to decline the scoring.  The subject IT 

organization was given an opportunity to review the final dissertation resulting from this 

study before it is made public to prevent loss of intellectual property (IP) or disclosure of 

proprietary information. Due to IP considerations, only summarized and sampled data is 

published in this dissertation document. Researcher may be contacted for complete set of 

data, calculations, and complete statistical analysis results.  

In addition to relying on the existing data confidentiality, the data collection 

process was first presented to the Walden Internal Review Board (IRB) for approval.  

The full IRB approval was received with approval number 10-24-11-0113109.  A 

literature support was included in the study to provide the IRB with a rationale for use of 

the software system data from technology manufacturing organization.    

Instrumentation and Materials 

 For instrumentation, this study used an ISO/IEC 9126 software quality model to 

explicate software maintainability and its four sub-characteristics to evaluate the impact 

to software maintainability based on source code quality and static behavior.  The study 

further used source code attributes and integrated AHP within evaluation process to 

enrich the data analysis quality.  AHP uses the software expert knowledge by allowing 

weights assignment to software maintainability sub-characteristics, source code 



www.manaraa.com

 

 

114

attributes, and measures.  The ISO/IEC 9126 model has been widely used by researchers, 

including Heitlager (2007), Chen and Huang (2009), and Kanellopoulos et al. (2010) to 

operationalize software maintainability and its sub-characteristics.  Kanellopoulos et al. 

(2010) further leveraged ISO/IEC 9126 standard, enhancing it pragmatically with AHP, a 

decision-making technique that distills complex multi-criteria decisions to one to one 

comparisons (Saaty,1980).  This study partly integrated Kanellopoulos et al.’s approach 

to assess impact on software maintainability and its sub-characteristics: analyzability, 

changeability, stability, and testability, and therefore examine the relationship between 

the independent or treatment variable (ASDM) and the dependent variable (software 

maintainability) as discussed in chapter 2.   

 Other variant models, such as the Evaluation Method for Internal Software 

Quality or  EMISQ by Plosh et al. (2007), Fuzzy AHP (FAHP ) by Liang and Lien 

(2007), and the decision making model using AHP to enable quantification of quality 

attributes for varied architecture pattern used by Svanhberg and Wohlin (2005) were 

reviewed in the literature related to methodology.  Further, the IEEE 1219 standard 

model by Broy et al. (2007), maintainability index (MI) formula based on hierarchical 

structure by Oman et al. (1994), clustering with K-Means and Neural Gas algorithms by 

Zhong et al. (2004), and K-Attractors clustering algorithm with ISO/IEC 9126 model by 

Kanellopoulos et al. (2008) have been utilized by other researchers.   

Jung, Kim, and Chung (2004) argued that the structure of ISO/IEC 9126 software 

standard is a multidimensional concept, when they surveyed the user's satisfaction related 



www.manaraa.com

 

 

115

to software quality using ISO/IEC sub characteristics.  Their single case study revealed 

validity of the structure with some ambiguities for few sub-characteristics such as 

replacability, installability, testability, and coexistence.  Al-Kilidar, Cox, and Kitchenham 

(2005) evaluated the quality of outputs of the design process using ISO/IEC 9126 and 

reported that this standard does not offer any procedural guidelines for aggregating the 

metrics for overall quality evaluation.  This void was well recognized in this study, and 

hence, it integrated the widely used and applicable measures used by the researchers 

highlighted in the literature review. 

The ISO/IEC 9126 model is being used widely; however, it does lack on 

providing practical guidance to apply the right measures in the realistic evaluation of 

internal quality of software.  Lee and Lee (2005) evaluated integration of AHP in their 

case in the light of this given limitation of ISO/IEC 9126 in actual methodical 

measurement of identified software quality characteristics.  The pair-wise comparison 

does increases significantly, and hence, the AHP method's up-scalability is limited with 

more number of alternatives or system properties, as argued by Karlsson and Wohlin 

(1998).  They also further contended that the amount of redundancy in the pair-wise 

comparisons builds this method's insensitivity to errors in the expert's judgment.  The 

resultant weights are relative and essentially ration scale facilitating elicitation of 

weights.  Correia, Kanellopous, and Visser (2009) studied the mapping between software 

properties and quality characteristics using AHP towards the refinement of mapping 

using relative weights derived using AHP.  This study integrated the same approach as a 



www.manaraa.com

 

 

116

part of the data analysis method and uses the internal software experts including 

developers, Agile practitioners, and XP developers.   

 Lastly, the latest systematic review on software maintainability metrics conducted 

by Riaz et al. (2009) reported that the most frequently used predictors were based on size, 

complexity, and coupling.  Furthermore, these predictors were used at the source code 

level, and this finding is well congruent with internal quality metrics view of ISO/IEC 

9126 model of software quality.  This software quality model observed that identified 

internal attributes of the software are a pre-requisite for achieving the desired external 

behavior.  Furthermore external behavior of the software system is a pre-requisite for 

achieving quality in use.    

 This study utilized the internal quality notion of ISO/IEC 9126 model.  The 

research question in this study also directed the integration of the analysis of source code 

properties using the same predictors as well as additional ones that includes duplication, 

unit size, and unit testing used in the latest study conducted by Kanellopoulos (2010).  

Additionally, Riaz et al.’s (2009) systematic review results revealed that the most 

commonly used maintainability measure used ordinal scale that was based on expert 

judgment.  Analytic hierarchy process in this study further captured the ASDM and 

maintainability expert’s subjective judgment to alloy with quantitative measurements of 

software maintainability that includes software analyzability, changeability, stability, and 

testability.   



www.manaraa.com

 

 

117

Thus, the ISO/IEC 9126 quality model integrated with AHP similar to the 

integration in the study conducted by Kanellopoulos et al. (2010) is appropriate for this 

study because its internal quality notion clearly aligns with intent of assessing the impact 

on software maintainability characteristics.  Additionally, the ISO/IEC 9126 standard is 

structured hierarchically outlining quality characteristics and sub-characteristics 

providing focused frame of reference on each main branch of quality characteristics, such 

as maintainability with ease in mapping source code measures to each sub-characteristics.   

This quality model uses the standard terminologies being an international standard, and 

hence, is a choice of researcher community as well as associated practitioners within IT 

organizations.  Other similar hierarchical quality models such as Boehm’s (1978) model 

focused on effort on software maintenance cost effectiveness whereas McCall’s (1977) 

model focused on the precise measurement of the high-level quality characteristics and 

attempts to define how easily, reliably, and efficiently can one use software as is.  

McCall’s hierarchical model attempted to group the quality perspectives in set of quality 

factors, criteria, and measures or metrics.  The ISO/IEC 9126 model offers a hierarchical 

view of software characteristics without clear guidance on how to measure the enlisted 

sub-characteristics, but offers three distinct quality notions described in Figure 11.  

Additionally, the magnitude and direction of change from independent variables can be 

easily identifiable in this simplistic model.   

In summary, the ISO/IEC 9126 software quality model built the clarity about 

dependent variables and AHP model enables the researcher to enrich the quality of the 



www.manaraa.com

 

 

118

analysis allowing quantification of the subjectivity assigned by the Agile experts in 

practical settings of this quasi experimental study.   

Data Collection and Analysis 

Upon approval from Walden University’s IRB, data was collected from the IT 

department of a U.S.-based semiconductor manufacturing organization by downloading 

the source code of software system – A, directly from the source code repository using 

Tortoise SVN tool on a secured workstation managed within the intranet of the IT 

organization.  The selected code metrics data was retrieved using Source Monitor and 

Understand tools.  The data was then organized and manipulated for analysis and 

interpretation using AHP model of weight elicitation, statistical analysis tool–MiniTab 

version 15, SPSS version 19, and Excel 2007 programs.  A data mapping containing a list 

of variables, source code attributes, and code metrics was created using the Excel 2007 

program.  This data-mapping table served as the basis for the case data set for software 

system under study.  The maintainability related sub-characteristics were regressed for 

ASDM or X variables based on the collected data to answer the research hypotheses of 

this study. 

Analytical Model of Theoretical Framework 

The ISO/IEC 9126 quality model integrated with AHP (Kanellopoulos et al., 

2010) within the framework of Lehman & Belady’s (1976) software maintenance and 

evolution theory as summarized and studied (Sindhgatta, 2010) in Chapter 2 built the 

foundation for this study.   



www.manaraa.com

 

 

119

 Ping (2010) posited that the software evolution is inseparable from software 

maintainability attribute.  The ASDM-driven software life cycle complies with seven 

Lehman and Belady’s laws of software evolution, as reported by Sindhgatta et al. (2010) 

from their software project case based on the Scrum method.  Few earlier studies 

(GodFrey & Tu, 2000; Xie et al., 2009), however, were based on open source software 

system and related data.  Furthermore, although Xie et al.’s study was partly inconclusive 

on four (of eight laws), they found that Continuing Change Hypothesis (CCH ), 

Increasing Complexity Hypothesis (ICH), Self Regulation Hypothesis (SRH), and 

Continuing Growth Hypothesis (CGH) were valid for open source software evolution.  

Capiluppi et al. (2007) examined ICH’s applicability within the XP-driven software 

evolution.  As reported in the literature review, there exist scant studies related to Agile-

driven software evolution, with an exception of recent work from Sindhgatta et al. 

(2010), which was limited to an empirical examination of Lehman’s law within ASDM.   

This study extended further and employed analytical model shown in Figure 12 based on 

Lehman and Belady’s software evolution laws within ASDM context impacting software 

maintainability characteristics and its four core constituents: SA, SC, SS, and ST. 

 



www.manaraa.com

 

 

120

 

Figure 13. Theoretical model for this study 

This study’s objective was to investigate the software maintainability during the 

ASDM-driven software development project at every iteration and production release 

cycle, which is also grounded in the supposition of Lehman’s Laws of software evolution 

theory as depicted in above figure of the theoretical model.  Furthermore, based on the 

ISO/IEC 9126 software quality standard, the maintainability sub-characteristics were 



www.manaraa.com

 

 

121

decomposed further as shown in Figure 14 with indentified source code attributes and 

measures based on the literature review discussed earlier. 

 

 

Figure 14.  Software maintainability model with source code metrics used in this study 

The selected set of metrics was used in various previous studies and many 

researchers for object oriented development approach as well as within Agile-driven 

software development projects.  The link and map diagram (Figure 14) shown guided this 

section of the analysis. 



www.manaraa.com

 

 

122

 

Figure 15.  Link and map diagram explicating software quality attributes, code 
properties, and source code measure. 

This study employed the metrics for selected source code properties based on the 

literature review discussed earlier with their purpose and operation definition as tabulated 

in Table 9.  The next section outlines the data analysis steps. 

 

 

 

 



www.manaraa.com

 

 

123

Table 9 
 
Software Properties or Source Code Attribute with Applicable Measures and  
Definition 
 

Attribute Metric What it measures 

Unit Size  Lines of code per unit Unit Size (of a method) 

Complexity 

Cyclomatic 

Complexity (CC) 

 Level of complexity of the design & 

coding structure 

Coupling 

Coupling Between 

Objects (CBO) 

Count of the number of classes to 

which a class is coupled. 

Duplication 

Code Duplication or 

Cloning (D) Degree of source code duplication 

Unit Testing 

Test Coverage and  

Count of ‘Asserts’ per 

class file 

Small test program to test the code 

and depth of the testing 

 

Attribute Operationalization 

 

Unit Size Number of lines of code/statements in a method 

Complexity 

CC (McCabe Metric)= number of linearly independent paths 

through a source code (method) 

Coupling 

Count of the number of classes to which a class is coupled 

(CBO) 

Duplication 

The % of all code that occurs more than once in equal code 

blocks of at least 6 lines 

Unit 

Testing 

Percent of  Test/code coverage and count of Assert within 

class files measured at the end of every iteration 

 



www.manaraa.com

 

 

124

Data Analysis Steps 

Enlisting software attributes for dependent variables or software maintainability 

sub-characteristics: This step begins with clearly listing the applicable measures for each 

dependent variable as shown in Table 10.  Note that these measures are retrieved based 

on the literature review conducted in chapter 2.  The specific studies that used these 

measures are Kanellopolious (2008), Kanellopolious (2010), Heitlager (2007), and a 

systematic review conducted by Riaz et al. (2009). 

Table 10 

Maintainability - Dependent Variables and Their Measures 

Software 

Analyzability 

Software 

Changeability 

Software 

Stability 

Software 

Testability 

Complexity 

measured in 

McCabe CC 

Complexity 

measured in 

McCabe CC 

Complexity 

measured in 

McCabe CC 

Complexity 

measured in 

McCabe CC 

Coupling 

measured in 

CBO 

Coupling 

measured in 

CBO 

Coupling 

measured in 

CBO 

Coupling 

measured in 

CBO 

 



www.manaraa.com

 

 

125

Table 10 (Continued). 

Software 

Analyzability 

Software 

Changeability 

Software 

Stability 

Software 

Testability 

 

Duplication 

measured in 

cloning 

percentage 

Duplication 

measured in 

cloning 

percentage 

Duplication 

measured in 

cloning 

percentage 

Duplication 

measured in 

cloning 

percentage 

Unit Test Efforts 

measured in test 

coverage 

percentage and  

Assert counts 

per Class 

Unit Test 

Efforts 

measured in test 

coverage 

percentage and  

Assert counts 

per Class 

Unit Test 

Efforts 

measured in 

test coverage 

percentage 

and  Assert 

counts per 

Class 

Unit Test 

Efforts 

measured in 

test coverage 

percentage 

and  Assert 

counts per 

Class 

 

 The discrete values measured using metrics shown in Figure 14, are multiplied by 

the weights derived using AHP process, for each software attribute to compute value for 

each software attribute as outlined in equations A and B. 

  



www.manaraa.com

 

 

126

Table 11 

ASDM:  Independent Variables and Their Measures 

Variable > Test-Driven 

Development 

Refactoring Continuous Integration 

(CI) 

Operational 

measure 

Percentage of Test 

Classes (Test Class 

Count/Total Classes) 

 Cyclomatic 

Complexity (1 

/Count of 

Classes with 

Cyclomatic 

Complexity > 

21) 

Total Count of 

successful builds  

Scale/Data 

Type 
Ratio/Discrete Ratio/Discrete Ratio/Discrete 

 

Note that there is more than one measure for some variables such as complexity 

and unit test efforts, inherited from the specific literature discussed earlier related to these 

source code attributes. 

As shown in Figure 13, the data collection focused on maintainability aspect of a 

software system quality as defined by ISO/IEC 9126 model with sub-characteristics 

defined as: 



www.manaraa.com

 

 

127

Analyzability: how easy or difficult is it to understand where in the system, specific 

changes need to be made?  

Changeability – how easy or difficult is to make actual change?  

Stability – how easy or difficult is to maintain the software in stable and consistent state, 

after making a change? 

Testability – how easy or difficult is to determine whether change made has been 

implemented correctly?  

Software maintainability compliance sub-characteristics listed under software 

maintainability hierarchy of ISO 9126 is not included in this study since the compliance 

measurement is not applicable within the scope of this research question.  This study is 

rather focused on the assessment of the impact on maintainability itself and not on the 

compliance aspect of maintainability. 

AHP, one of the many multi-criteria decision processes, allowed weight 

elicitation from the ASDM experts in selected IT organization of identified technology 

manufacturing corporation, but those that did not work on the software system chosen 

under this study.   This is to prevent any bias towards scoring the system attributes.  The 

outline of this process is explained below with details in addition to Appendix B. 

Analytic Hierarchy Process (AHP) for Weights Assignment 

The AHP was employed for the weights assignment in this study.  The process 

often begins with distillation of complex decisions into a series of one to one 

comparisons.  Originally proposed by Saaty (1980), this technique integrates both 



www.manaraa.com

 

 

128

qualitative and quantitative dimensions of decisions.  Saaty characterized AHP as a 

method of prioritization.  Kanellopolious (2008) asserted that AHP systematically 

compares a list of objectives and within systems engineering discipline; it serves to 

evaluate alternative engineering design concepts through comparison as a powerful tool.  

The best alternatives are chosen with supportive rationale at the end.  AHP has previously 

been used in Kanellopolious’s (2008) scholarly study that was related to a data mining 

technique in the software maintenance domain.  Alternatively, Liang and Lien (2007), 

when selecting optimal ERP software integrating the ISO 9126 software quality standard, 

also used Fuzzy AHP, another variant of AHP.  Miranda (2001) compared ad hoc 

estimation with paired comparison approach and found higher-level accuracy and 

precision with paired-comparison method.  As standardized in the ISO 9126 software 

quality model, the software maintainability sub-characteristics–analyzability, 

changeability, stability, and testability–are related to software maintainability stem or the 

objective itself.  The AHP process is a natural fit for assessing the research question of 

this study for which qualitative and quantitative aspects of decisions needed to be 

analyzed.   

When comparing the alternatives with set objectives, AHP generates a pair wise 

comparison matrix.  The relative importance of objective O(i) as compared with objective 

O(j), is expressed in a number, and it is placed in the i th row and j th column.  These 

numbers or values are picked from 1-5 scale using below norms with: 

 a(i j) is assigned value 1, if the two objectives are equal in their importance; 



www.manaraa.com

 

 

129

a (i,j) is assigned value 2, if O(i) is weakly more important than O(j); 

a(i,j)  is assigned value 3, if O(i) is strongly more important than O(j); 

a(i,j) is  assigned value 4, if O(i) is very strongly more important than O(j); and 

a(i,j) is assigned value 5, if O(i) is absolutely more important than  O(j). 

Once this value assignment step is complete, this comparison matrix was 

normalized and eigenvalues were calculated.  When evaluating the alternatives for the 

objectives under study, these eigenvalues represent coefficients or weights. 

In this study, AHP was applied only on the 2nd level of the hierarchy shown in 

Equation B.  At the first level, the source code properties (Complexity, Coupling, 

Duplication, and Unit Testing efforts) were evaluated using the selected metrics.  AHP 

was applied to the 2nd level in the hierarchy where software maintainability sub-

characteristics viz., analyzability, changeability, stability, and testability, were assessed 

using source code properties and their weights.  Lastly, software maintainability was 

evaluated from all four listed sub-characteristics, but with simple addition of weighted 

average of all corresponding Y variables or sub-characteristics: changeability, 

analyzability, stability, and testability.  AHP was not be applied at the 1st level because 

maintainability is simply a function of all sub-characteristics and the sum of their 

weighted average was used to yield final Y value. 

In sum, the following equations were used to calculate the values for each sub-

characteristic shown in the maintainability model using ISO/IEC-9126 quality 

characteristics hierarchy. 



www.manaraa.com

 

 

130

V(SCi) = V(D1)*W(D1i) + V(D2)*W(D2i) +...+ V(Dn)*w(Dni)      Equation A  

And 

V(Di) = V(M1) + V(M2) +...+ V(Mn)     …………………………….  … Equation B 

V(Di) = Value of Source Code Property Di 

W(Dji) = Weight of Source Code Property Dji for Sub -Characteristic i  

V(Mi) = Value of Metric Mi derived for the source code using software tools 

(D represents Source code property, and M represents Metrics) 

In the subsequent section, a process detail of deriving the number of ASDM 

experts is discussed.  To elicit the weights for source code attribute such as coupling, 

complexity, duplication, and unit test efforts, an expert Agile developer or developers 

following ASDM within selected technology manufacturing organization, were asked to 

provide their experience-based judgment.  An ASDM expert was selected purposively 

from the same technology manufacturing organization from where the software system 

related source code properties were retrieved.  An overview of ISO/IEC 9126 

maintainability characteristics and their definitions were provided to the selected experts 

to ensure their familiarity with it.  Next, the actual data collection pertaining to weight 

elicitation relied on the input collected from them.  The ASDM experts essentially filled 

in their comparative score using scale of 1-5 to evaluate the importance of the source 

code attributes for each sub-characteristic.  The scored data is shown in Appendix B. 

Miranda (2001) suggested that pair-wise comparison requires the selection of 

qualified experts and a tool for automating the underlying calculations.  He also further 



www.manaraa.com

 

 

131

cautioned that the number of experts used to evaluate the entities (n) should not exceed 

entities the number generated by (n) / 3.  With a higher number of experts, the 

opportunity to perform multiple comparisons diminishes.  This study incorporated 

Miranda’s (2001) recommendation of allocating comparisons to experts in which every 

other comparison will be assigned to a different expert in the sequential order as needed.  

Table 12 shows the simple derivation of the number of ASDM experts needed of weight 

elicitation.  Again, in this study the AHP was applied on 2nd level only.  The Excel-based 

AHP template tool was used to automate the calculations based on the weights 

assignment by the ASDM experts as documented in Appendix B.   

Table 12 

Experts’ Weight Elicitation in AHP on System Property or Attribute Level 

Entities Number of entities (n) 

Number of experts  

(n /3)   

Complexity    

Coupling n = 4   4 / 3 = Rounded to 1  

Duplication    

Unit Test Efforts       

 

Once the weight assignment was completed for the system code property (D) for 

each sub-characteristics (SC) as outlined above; software maintainability, analyzability, 

stability, and testability were calculated based on the actual values collected in template 

of Table 13.  Lastly, to validate the research hypotheses, regression analysis was 



www.manaraa.com

 

 

132

conducted on the series of derived values at each subsequent release, for all four sub-

characteristics or dependent variables, and the resultant maintainability that is simply a 

sum of weighted average of all four sub-characteristics or Y1, Y2, Y3, and Y4 variables. 

Repeated measure design is considered statistically powerful because it controls 

for potential sources of variability (Aczel, 2006).  There exists a small chance of residual 

error or experimental error beyond the researcher’s control.  Regression analysis within 

subjects design involves repeated measures on the same subjects with multiple 

observations overtime.  Regression analysis was conducted using the MiniTab tool for 

(ASDM) variables–X1 (TDD), X2 (Refactoring), and X3 (CI) and four maintainability 

related variables.  One-way repeated measure ANOVA technique and paired-samples T-

test may be an alternate approach; however, it does not establish concrete causal link 

details between independent and dependent variables.  Because there are repeated 

measurements taken at every software release during an ASDM development project, and 

because the intent of the study is to assess the impact of ASDM model characterized by 

key variables listed earlier, this study used multiple regression analysis run against the 

maintainability sub-characteristics or dependent variables.  It also assessed the impact on 

final weighted maintainability, which is a function of all Y variables or sub-

characteristics.  This regression results confirmed with individual regressions conducted 

for Y1 through Y4 variables. 



www.manaraa.com

 

 

133

Data Collection and Analytical Method Validation 

Validation of the data collection and analytical method are important steps 

because discrepancies in interpretation may occur, resulting in type I or type II errors.  

However, in this study, the data set, that is, the actual source code was generated as a 

result of software systems being developed using ASDM based on selected technology 

manufacturing organization’s real life business needs.  Additionally, the data set 

corresponding to selected software system for this study was based on the key selection 

norms such as development paradigm, developers’ experience with Agile, and ASDM 

practices followed during the projects.  This data was collected from the software system 

details and history managed using internal software tool within the technology 

manufacturing organization managed by the project management team. 

The data analysis method employed the ISO/IEC 9126 quality standard to define 

the variables and AHP process for weight elicitation.  The AHP process is being used in 

the software engineering discipline as well as in the IT and software industries, as cited in 

the literature review highlighting relevant researchers’ empirical work.  From a 

conceptual and analytical framework, an analytical model is crucial to measure the 

software maintainability during the ASDM or independent variables in action.  In other 

words, it is critical to measure the software maintainability computed along with software 

analyzability, software changeability, software stability, and software testability during 

the actual software development work beginning with iteration-one, for existing software 

systems that evolve through ASDM.  The maintainability was then subsequently 



www.manaraa.com

 

 

134

measured through all release cycles until the final release.  However, there are certain 

steps that were conducted to measure the impact of ASDM on software maintainability 

accurately and to ensure that the results were reliable and valid.   

First, the data was filtered from only the software system that was developed and 

maintained by trained and experienced Agile developers and Agile-driven project 

management practitioners with development approach adhering to key ASDM 

characteristics as outlined in the Agile manifesto.  These software systems are developed 

using XP and or Scrum methodologies, that is, software systems developed using the 

non-ASDM approach and unsuccessful development projects will be excluded.  These 

filtered software systems with their evolutionary source code-related data sets were then 

standardized using the SPSS tool because the unit of measurement for independent 

variables was not the same.  The standardized Z score was created for all independent 

variables, as shown in appendix I.   

Further, software systems that were maintained or updated based on 

infrastructural compliance requirements and platform architectural requirements, and 

essentially were not touched by programmers–including small size emergency fixes with 

the duration–less than two iterations were eliminated from the final analytical data.  This 

filtering logic to examine the research question of assessing the impact on software 

maintainability related characteristics within controlled and well-seasoned organizations 

adapting ASDM was also driven by the stronger need for accurate assessment.   



www.manaraa.com

 

 

135

This study did not include any open source developed system data, experimentally 

developed software system in unreal life settings, or non-proprietary software system 

related data due to inherent limitations of such a data set being prone to the impact of 

other uncontrolled variables, subsequently leading to inaccurate findings.  More 

importantly, the study included single software system that operate in or address a 

problem or activity of real world or E-type software systems (Lehman & Belady, 1976) 

to comply with the core analytical model of this study.  As noted, Sindhgatta et al. (2010) 

reported that most of Lehman’s laws hold true for the ASDM-driven software 

development project in their case study of the E-system. 

Second, the source code was the only entity that was analyzed.  No post 

deployment related defects data were part of the scope of this study.  This focus is mainly 

driven by the scope of the research question as well as the fact that it would remove any 

invalid results related to software maintainability triggered and managed outside of 

ASDM-driven projects.  Some of the these trigger points include code changes incurred 

from other technical initiatives not qualified for the ASDM project, emergency or critical 

bug fixes handled outside of ASDM teams, resulting configuration changes, database 

migration efforts, security control integration changes outside of ASDM project work 

involving either software code changes or no changes.  The software system was also 

filtered for a minimum of 2 years and maximum of 5 years of life cycle age, meaning that 

no software system older than 5 years and shorter than 2 years of age was part of this 

study.  Agile is just a decade-old movement, therefore it is a practical and wise approach 



www.manaraa.com

 

 

136

to examine the software systems that have been developed in relatively stable and mature 

Agile ecosystems.  Additionally, this study did not aim for the measurement of whether 

the software life cycle age or period of its usage itself influences the software 

maintainability and its sub-characteristics. 

Lastly, the analysis involved software system that had released at least two 

production versions during the development project.  The selected software application 

was used in the real life or production setting for a minimum of 2 years and was already 

being developed and or maintained using ASDM.  Non-Agile-driven developed or 

maintained software systems were excluded from this study.  This allowed for 

measurement of whether the ASDM-driven approach has an impact on software 

maintainability changes or not. 

The filtered data thus allowed for a clean data set that was analyzed, 

comprehending the change or variations in analyzability, changeability, stability, and 

testability.  This analysis helped to answer the question associated with software 

maintainability and ASDM within the framework of Lehman and Belady’s software 

evolution and maintenance hypotheses, testing the impact of ASDM on software 

maintainability, which Sindhgatta et al. (2010), did not analyze in their study.  

Additionally, this analysis also assisted to measure changes in software maintainability 

within the ASDM-driven software system life cycle using ISO/IEC 9126 software quality 

model coupled with the AHP decision model that Kanellopoulos et al. (2010) used in 

their maintainability related study.  This Kanellopoulos et al.’s study, however, was not 



www.manaraa.com

 

 

137

targeted to assess how ASDM as a software development approach may impact the 

software maintainability, including its four sub-characteristics.  The analysis in this study 

precisely addressed this open gap within the Agile driven software development and 

software maintainability literature guided by Lehman’s software evolution theory. 

The use of the multiple regression analysis is a prevalent method when the 

researcher wants to test the impact of a treatment or independent variable through 

observation in changes in the slope of the regression equation.  Within the context of the 

given research question, in this study: 

1. The post facto source codes stored in each revision were analyzed throughout the 

development cycle by measuring the values for selected metrics and finally values 

for software maintainability and its sub-characteristics were computed.   

2. The source code was analyzed based on the tools listed in Table C6 and also using 

the source code repository log.  ASDM-specific variables were also measured by 

counting the total class files, test class files for TDD, counting percentage of 

classes with CC higher than 21 using the Understand tool for the REFR variable, 

and by counting the number of successful builds for CI variable using the CCNET 

tool.   

3. The selected source code properties were collected after every iteration 

completion at the end of week within ASDM development project, including all 

releases, for assessing the impact of ASDM on software maintainability and sub-

characteristics.  Finally, the values for all the pertaining software attributes shown 



www.manaraa.com

 

 

138

in Figure 16 were calculated using the shown measures before running the 

multiple regression analysis. 

The data filtering norms controlled for the non-related data set as well as for 

confounding variables such as software age, developer’s technical ability to develop 

software within ASDM framework, all of which are argued to impact resulting software 

maintainability that is a function of analyzability, changeability, stability, and testability, 

thus ensuring the validity and reliability of the results.    

 

Figure 16. Example of actual source code values and weights for single iteration 



www.manaraa.com

 

 

139

Figure 16 shows the example of the values that leads to the actual computation of 

the index values for dependent variables based on the actual source code metrics and the 

weights derived using AHP.  For example, for software iteration 5, the specific software 

revision was downloaded from software source repository first.  Next, the values of each 

software attribute were derived using the software tools listed in Table C6 with actual 

values shown in this figure as an example.  Also, the weight for each source code 

attribute for each subcharacteristics was derived using AHP one time.  Final values were 

calculated for all Y1-Y4 variables using Equations A and B.   The maintainability or Y 

value is the sum of weighted average of these four Y variables.  Appendix I shows these 

calculated values for all Y variables.  The next section addresses the reliability and 

validity aspect of the measure to support the experimental design of this study. 

Operationalization and Computation of Y and X Variables 

 As defined earlier, ISO 9126 provides operational definitions for maintainability 

and its sub-characteristics based on software’s internal quality notion. Object-oriented 

code-specific metrics that are widely used by the researchers in software engineering 

domain are selected as M1 through M10.  The actual values for these measures were 

collected using the various software tools listed in the Table C6.   Each SA, SC, SS, and 

ST construct was quantified simply using the collected raw data from the source code 

during at the end of  iteration, and corresponding Weights yielded from AHP, using 

Equations C-F. 



www.manaraa.com

 

 

140

Analyzability = WAHP-Complexity For Analyzability X (M1+M2+M3 +M4) + WAHP-Coupling For 

Analyzability X (M5+M6+M7) + WAHP-Duplication For Analyzability X (M8) + WAHP-UnitTestEfforts 

For Analyzability X (M9+M10) ………………………………………………… Equation C 

 

Changeability = WAHP-Complexity For Changeability X (M1+M2+M3 +M4) + WAHP-Coupling For 

Changeability X (M5+M6+M7) + WAHP-Duplication For Changeability X (M8) + WAHP-

UnitTestEfforts For Changeability  X (M9+M10)……………………………  Equation D 

 

Stability = WAHP-Complexity For Stability X (M1+M2+M3 +M4) + WAHP-Coupling For Stability X 

(M5+M6+M7) + WAHP-Duplication  For Stability X (1/M8) + WAHP-UnitTestEfforts  For Stability X 

(M9+M10) …………………………………………………………………..Equation E 

 

Testability = WAHP-Complexity For Testability X (M1+M2+M3 +M4) + WAHP-Coupling For 

Testability X (M5+M6+M7) + WAHP-Duplication  For Testability X (M8) + WAHP-UnitTestEfforts For 

Testability X (M9+M10)……………………………………………………….  Equation F 

 The Weights (WAHP) used in the equations were derived using the AHP process 

explained earlier, using the AHP scoring protocol, and the normalization of eigenvalues 

was derived using the table shown in Appendix C.   

Table 13 

Software Attributes, Their Measures, and the Actual Data Template Sheet 

Measure M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 



www.manaraa.com

 

 

141

Iteration 

(0 < 

McCabe 

CC <10) 

1 /(11 < 

McCabe 

CC < 

20) 

1 /(21 < 

McCabe 

CC < 50 

) 

1/ Unit 

Size 

0 < 

CBO < 

6 

7 < 

CB0 < 

14 

1/ (15 

< CBO 

< 50) 

Assert/Clas

s 

Test 

Coverag

e 

1/Clonin

g  

I1                     

     I61                     

 

The values of M1 through M10 were retrieved using the tools for all iterations as 

shown in appendix G.  As an example of the final software analyzability for iteration-1, 

the calculation is shown below.  All 61 iteration specific values along with sum of 

weighted maintainability essentially were tabulated at the end, for final regression 

analysis against all X variables.  Appendix H shows the computed values for all Y 

variables. 

SA= 0.43 (.71+7.12+9.58+.31) + 0.25 (.61+.25+7.10) + 0.25 (10.26) + 0.06 (5.12 +.27) 

SC = 0.40 (.71+7.12+9.58+.31) + 0.17 (.61+.25+7.10) + 0.17 (10.26) + 0.23 (5.12 +.27) 

SS = 0.15 (.71+7.12+9.58+.31) + 0.19 (.61+.25+7.10) + 0.19 (10.26) + 0.44 (5.12 +.27) 

 ST = 0.11 (.71+7.12+9.58+.31) + 0.14 (.61+.25+7.10) + 0.16 (10.26) + 0.57 (5.12 +.27) 

Similarly, for each iteration, values for corresponding X variables were also 

calculated in a separate table, as shown below.   

 

 

 

 



www.manaraa.com

 

 

142

 

 

 

 

 

Table 14 

ASDM or X Variables and Their Specific Measure with the Actual Data Collection 
Template Sheet as an Example for 10 iterations 
  X1 X2 X3 

Revision 
/Iteration 

Test Driven 
Development/TDD 

(Test Class 
Count/Total Class) 

Refactoring 
(REFR) 
(1 / Count of 
Classes with 
Cyclomatic 
Complexity 

>21) 

Continuous Integration (CI) 
(Count of Successful builds) 

1       

2       

3       

4       

5       

6       

7       

8       

9       

10       



www.manaraa.com

 

 

143

 

Lastly, multiple regression analysis was conducted over final values of all Ys 

separately as well as for the sum of weighted Y on each X variable separately, yielding 5 

regression models and statistics. 

Reliability and Validity 

Reliability and Validity of the Measurement 

Reliability and validity within a quantitative study is important to ensure that the 

set of measurements are consistent and valid.  These two quality aspects of measurement 

are often analogously referred to as precision and accuracy.  In this study, inter-rater 

reliability, and test-retest reliability tests were conducted during the measurement of X 

and Y variables.  Through inter-rater reliability, the same software tools and metrics were 

used by a different person other than the researcher of this study to measure the coupling, 

complexity, duplication, and unit size of the same software system including, 

measurement of TDD, REFR, and CI variables.  Additionally, the researcher then 

measured and analyzed the collected metrics for all the operationalized variables (TDD, 

REFR, CI, and SA, SC, SS, ST, and SM) at two different times to support test-retest 

reliability.  Note that the post-facto source code was downloaded for analysis of static 

quality attributes that were least likely to change over time, and this test-retest step 

showed no change over time.  Lastly, all the source code revisions were ordered 

randomly, and the source code attributes were measured again through multiple-form 

reliability test.  No change in the measured values was seen at the end of this test as well.  



www.manaraa.com

 

 

144

Reliability of the measure thus ensured through these three reliability tests viz. inter-rated 

reliability and test-retest reliability, and multiple-form reliability.  Next, reliability is 

necessary, but not a sufficient condition for validity and hence additional approaches 

were taken to address validity as below. 

Validity, according to Kaplan & Saccuzzon (2001), can been described as the 

agreement between a measure and the quality it is intended to measure.  It also refers to 

the accuracy of the measurement.  The software tools listed in Table C6 were used to 

automate the collection of key metrics data pertaining to each independent and dependent 

variable.  To address threats to validity of the measurement, the source code classes and 

methods were selected from every iteration for their validation against the actual status of 

source code classes and methods within every revision or iteration.  In other words, the 

researcher validated the actual type and structure of the class against the measured value 

of their Cyclomatic complexity, coupling, unit size, and assert counts, for their accuracy.  

Note that software tools listed in table C6 were used to conduct the measurement of 

source code attributes that were correlated with actual set of measurement calculated 

using the underlying construct of the actual measure.  For instance, Cyclomatic 

complexity is the number of linearly independent path in the program or source code, in 

this study for a class or method.  The researcher measured the actual path manually for 

selected sampled classes/methods from all iterations and compared it with the actual 

measured paths by the tool used in this study.  The manual measurement yielded the same 

values as that of the automated measurement. 



www.manaraa.com

 

 

145

Content validity of the measure was addressed through measurement of complete 

revision of source code during that iteration.  In other words, all the software classes were 

evaluated when measuring system attributes.  Content under-representation was thus 0 

with 100% source code examination with no exclusions.   

Additionally, a test has content validity when the test items are selected to comply 

or adhere to specified criteria built through an extensive examination of the subject 

domain (Anastasia & Urbina, 1997).  This study utilized well-proven measures and 

metrics that are being used by the researchers in the field of software engineering.  The 

selected set of measures and the researchers are tabulated in Table 5.   

External Validity 

I took proactive steps to ensure that the selected instrument or metrics measured 

all of the dependent variables due to its relationship with similar studies conducted earlier 

to uphold construct validity.  In order to protect content validity, filtering based on 

existing research literature was applied while collecting the data from selected software 

systems developed using ASDM, in order for this study to address the research questions.  

The literature review is also being used to validate all the employed measures of software 

maintainability and sub-characteristics in this study.  Although the nature of research 

question demanded the data set selection from stable an IT organization where ASDM 

has been used extensively over several years, the external validity (Leedy & Ormrod, 

2005) of this study is limited since it studied the software system within single IT 

organization. 



www.manaraa.com

 

 

146

Internal Validity 

Internal validity is applicable to this quantitative study because its implied intent 

is to establish a causal relationship between independent variables (ASDM model’s key 

characteristics: TDD, Refactoring, and CI) and software maintainability, analyzability, 

changeability, stability, and testability.  According to Trochim (2007), internal validity 

assists to comprehend whether the observed changes in the dependent variable can be 

attributed to a program, treatment, intervention, or exposure.  For this study, the goal is to 

determine whether and to what extent ASDM impacts software maintainability that is 

essentially a function of SA, SC, SS, and ST.  Analysis for homoscedasticity was 

conducted to ensure the variance of errors is the same across all the levels of independent 

ASDM constituting: TDD, Refactoring, and CI.  Slight heteroscedasticity may not have a 

significant effect, but higher heteroscedasticity in the residual variance can distort the 

findings, paralyze the analysis, and lead to type I error (Berry & Feldman, 1985; 

Tabachnick & Fidell, 2001).  Additionally, Variation Inflation Factors (VIF) were also 

measured and recorded to check for the presence of multi-colinearity among independent 

variables.  Attention to the strength of the regression model was also given when 

conducting regression analysis. 

Chapter Summary 

The literature review revealed that software maintainability is indeed a key 

quality attribute and hence a valid concern for IT management within the software life 

cycle specifically driven by Agile as a development approach.  The literature also 



www.manaraa.com

 

 

147

suggested that analyzability, changeability, stability, and testability of software further 

aggregates and directly impact software maintainability, and thus its significance must be 

closely integrated at the development phase.  The increase in maintenance cost and 

efforts has been burdening IT organizations as well as core business organizations.  

Further, the literature also revealed that the poor software maintainability is a concern for 

IT management when adapting and leveraging ASDM within dynamic business 

landscape.  A concern was that the ASDM and its impact to software maintainability, a 

key software product quality characteristic, have received little research attention. 

This chapter discussed the research method for analyzing the software 

maintainability as an impact of ASDM within the software evolution cycle.  To remedy 

the shortcoming of past studies that relate the ASDM to software maintainability, this 

research employed a method leveraging the data analysis approach used by 

Kanellopoulos et al. (2010).  The variables analyzed included ASDM-specific 

independent variables and software maintainability, software analyzability, software 

changeability, software stability, and software testability, with iterative changes analyzed 

in all these listed independent and dependent variables. 

In summation, this chapter presented the research design, selected data set, 

research analytical method, and reasoning for choosing a quantitative design and quasi 

experimental method employing actual case study specific data sets.  This section of the 

study also related the research questions and hypothesis to the Lehman and Belady’s 

(1996) software evolution and maintenance laws.  Study participants were IT 



www.manaraa.com

 

 

148

professionals working for the semiconductor organization who worked from multiple 

work locations within the United States.  Purposive selection of data was used for this 

study, as it is driven by the specific research question that demands selection of software 

system that is designed and evolved using ASDM approach.  The existing primary data 

was used in this research that was a post facto in nature.  The data analysis was conducted 

using AHP process, SPSS, and MiniTab software tool.  Regression analysis using 

MiniTab was performed to analyze the extent of impact of ASDM specific key variables 

on SA, SC, SS, ST, and SM.  The focus was also on assessing the impact on resultant 

weighted maintainability through final regression analysis, which essentially was in 

compliant with each independent regression models run with Y1, Y2, Y3, and Y4.  In 

chapter 4, results of the data analysis are presented and synthesized to answer the 

hypotheses and research questions.  Accordingly, the stated hypotheses were accepted or 

rejected.  The results analyzed in Chapter 4 provide data-driven insight into how ASDM 

as a development approach may shape and impact software maintainability.  From the 

results obtained in chapter 4 based on the model developed in this chapter, ASDM 

practitioners, Agile PMO, IT application management, and software maintenance 

organizations can better comprehend, manage Agile-driven software life cycle, and 

provide pragmatic intervention to maintainability aspect of the software system. 

  



www.manaraa.com

 

 

149

Chapter 4:  Data Analysis and Results 

This quantitative study was conducted to determine whether and how the Agile 

software development approach in an IT organization impacts the software 

maintainability characterisitics.   The Agile software development model can be 

statistically attributed to the changes in software maintainability in terms of software 

analyzability, changeability, stability, and testability of the software.  The analysis 

consists of a multiple regression analysis, which incorporates the following predictive or 

independent variables: the TDD or  X1, REFR or  X2, and CI or X3.  The dependent 

variables were obtained from the ISO/IEC 9126 quality standard for software 

maintainability.  SA or Y1, SC or Y2, SS or Y3, and ST or Y4 were calculated utilizing 

equations C, D, E, and F from Chapter 3.  As a part of these calculations, source code 

properties such as complexity and coupling were analyzed and measured using selected 

attributes at every revision marked by the Agile iteration.  The results presented in this 

chapter answered the following five research questions: 

 RQ1.  How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software analyzability (SA)? 

RQ2.   How does the Agile software development model (ASDM), which is 

characterized by Test driven development(TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software changeability (SC)? 



www.manaraa.com

 

 

150

RQ3.  How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software stability (SS)? 

RQ4.  How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software testabiliy (ST)? 

 Additionally, the following research question is also answered through an 

examination of the impact on the resultant maintainability characteristic that is a function 

of SA, SC, SS, and ST. 

 RQ5.  How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact resultant weighted software maintainability (SM)? 

The results also tested the following 15 null and alternative hypotheses.  To 

answer RQ1, below three pairs of hypotheses were tested. 

H01: TDD has no influence on the Software Analyzability. 

HA1:  TDD has a positive influence on the Software Analyzability. 

H02: Refactoring has no influence on the Software Analyzability. 

HA2: Refactoring has a positive influence on the Software Analyzability. 

H03: CI has no influence on the Software Analyzability. 

HA3:  CI has a positive influence on the Software Analyzability. 

To answer RQ2, the next three pairs of hypotheses were tested. 



www.manaraa.com

 

 

151

H04: TDD has no influence on the Software Changeability. 

HA4: TDD has a positive influence on the Software Changeability. 

H05: Refactoring has no influence on the Software Changeability. 

HA5: Refactoring has a positive influence on the Software Changeability. 

H06: CI has no influence on the Software Changeability. 

HA6:  CI has a positive influence on the Software Changeability. 

To answer RQ3, three pairs of hypotheses were tested. 

H07: TDD has no influence on the Software Stability. 

HA7: TDD has a positive influence on the Software Stability. 

H08: Refactoring has no influence on the Software Stability. 

HA8: Refactoring has a positive influence on the Software Stability. 

H09: CI has no influence on the Software Stability. 

HA9:  CI has a positive influence on the Software Stability. 

To answer RQ4, three pairs of hypotheses were tested. 

H010: TDD has no influence on the Software Testability. 

HA10: TDD has a positive influence on the Software Testability. 

H011: Refactoring has no influence on the Software Testability. 

HA11: Refactoring has a positive influence on the Software Testability. 

H012: CI has no influence on the Software Testability. 

HA12:  CI has a positive influence on the Software Testability. 



www.manaraa.com

 

 

152

Lastly, to answer RQ5, three pairs of hypotheses were proposed and tested for the 

resultant Maintainability that was derived from sum of weighted SA, SC, SS, and ST. 

H013: TDD has no influence on the resultant Software Maintainability. 

HA13: TDD has a positive influence on the resultant Software Maintainability.   

H014: Refactoring has no influence on the resultant Software Maintainability. 

HA14: Refactoring has a positive influence on the resultant Software 

Maintainability. 

H015: CI has no influence on the on the resultant Software Maintainability. 

H015: CI has no influence on the on the resultant Software Maintainability. 

Data Collection and Analysis 

Prior to beginning the study, approval was obtained from Walden University’s 

IRB for the submitted dissertation proposal.  The data used in this study were made  

available from an IT department in a U.S.-based semiconductor technology 

manufacturing organization.  The data contained source code  properties retrieved from 

each software revision marked by weekly iteration cycle, located within the software 

code repository.  The selected software system followed the XP approach, an Agile 

software development model.  A total of 61 software revisions or versions were collected 

for data analysis beginning from August 2010 through June 2011.  Using this post facto 

data from the source code repository from the IT organization was deemed appropriate 

because this data provides a comprehensive measurement points during the Agile model 

driven evolution of software life cycle , as noted by Sindhgatta et al. (2010).  The 



www.manaraa.com

 

 

153

variables pertinent to the evaluation of the impact of the Agile model on software 

maintainability characteristics were  retrieved from existing and current Agile software 

development and maintainability literature .  Appendix D presents the material used from 

this source code data as well as the variables collected. 

Incomplete or Missing Data 

The source code properties or attributes-related data were collected using various 

software tools tabulated in Table C6.  The subjective expert judgment scoring related data 

was collected from the ASDM expert from the IT department of this semiconductor 

technology manufacturing organization.  Data for iteration in the 1st week of January 

2011 that make up the variables in this study were not recorded due to vacation observed 

by the development team.  Additionally, the data for test coverage metrics were not 

present for the initial 10 iterations, and those values were derived using the EM 

technique.  The final data set was significant enough to conduct statistical analysis over 

61 software revisions or iteration points for the software system that was developed using 

Agile approach.   



www.manaraa.com

 

 

154

      

 

 Figure 17.  A chart illustrating the analyzed software system specific statistics.  

Software System Data Selection 

From three unique software systems developed during 2010-2011, one software 

system was deemed eligible for analysis based on the criteria highlighted in Table 7.  The 

purposive selection was necessary to select the right software system and ensure that it 

did not contain missing values as well as any missing software iteration and that it would 

accurately allow the measurement to assess the impact of ASDM on software 

maintainability characteristics.  The following steps were also taken to improve the data 

analysis quality of the available data set of software system. 

61

11

4 5

12

0

10

20

30

40

50

60

70

T
o

ta
l 
it

e
ra

ti
o

n
s 

re
v
ie

w
e

d

T
o

ta
l 

d
e

v
e

lo
p

m
e

n
t 

d
u

ra
ti

o
n

 

(M
o

n
th

s)

A
g

il
e

 

P
ro

g
ra

m
m

e
r 

T
e

a
m

 s
iz

e

A
v
e

ra
g

e
 A

S
D

M
 

E
xp

e
ri

e
n

ce
 

(Y
e

a
rs

)

A
g

il
e

 P
ra

ct
ic

e
s 

fo
ll

o
w

e
d



www.manaraa.com

 

 

155

1. Testing coverage of specific data was not available for 10 iterations because the 

CCNET software tool was not integrated for these iterations to collect test 

coverage-specific data.  Hence, the expectation maximization (EM) was 

computed from all the available data set.   

2. Cyclomatic complexity-specific data was collected for every iteration and was 

grouped into three main categories based on the risk level.  This grouping allowed 

for granular analysis of the software classes influenced due to ASDM.  The three 

categories that were employed were 0 < CC < 10, 11 < CC < 20, and 21 < CC 

<50.   

3. Coupling between object (CBO) metric data was also collected for all 61 

iterations and it was grouped into three main categories based on the risk levels.  

This categorization allowed the analysis of the impact of ASDM variables to the 

granular level and the identity of the percentage of classes influenced in each 

category.  The three categories employed for CBO metrics were 0 < CBO < 6, 7 < 

CBO <14, and 15 < CBO < 50. 

Data Standardization 

 Data was first transferred into data analysis tool: SPSS 19.0.  Prior to conducting 

any analyses, data was manipulated in several ways.   First, for all three predictors (TDD, 

REFR, CI), standardized values (z scores) were created so that all independent variables 

were on the same scale.   Next, expectation maximization (EM) was used to estimate the 

values of missing data for test coverage (subvariable).  EM creates a correlation matrix 



www.manaraa.com

 

 

156

by assuming the distribution for the partially missing data and basing inferences about 

missing values on the likelihood under that normal distribution.  In the first step, the 

procedure determines the expected values of the missing data using the observed values 

and the parameter estimates.   The second step is the maximum likelihood estimation 

wherein the missing data is filled in and convergence is achieved (Tabachnick & Fidell, 

2006).   

Descriptive Statistics 

 Descriptive statistics were conducted on the independent (prior to standardizing 

and after) and dependent variables, as well as the numbers that were used to calculate the 

independent and dependent variables.  Prior to standardizing the independent variables, 

the TDD measurements ranged from 0.17 to 0.35 with a mean of 0.26 (SD = 0.05).  The 

REFR measurements ranged from 6.78 to 7.94 with a mean of 7.21 (SD = 0.30).  The CI 

measurements ranged from 1.00 to 74.00 with a mean of 33.07 (SD = 19.57).   After 

standardizing the independent variables, the mean will always be set at 0.00 and the 

standard deviation will be 1.00.  TDD ranged from -1.86 to 1.65, REFR ranged from -

1.44 to 2.44, and CI ranged from -1.64 to 2.09.    

SA ranged from 12.50 to 14.56 with a mean of 13.71 (SD = 0.39).  SC ranged 

from 11.43 to 13.52 with a mean of 12.85 (SD= 0.48).   SS ranged from 8.49 to 10.17 

with a mean of 9.41 (SD =0.60).   SM ranged from 472.99 to 563.28 with a mean of 

537.86 (SD = 20.93).   Means and standard deviations for the independent and dependent 

variables are presented in Table 15. 



www.manaraa.com

 

 

157

Table 15 

Means and Standard Deviations for TDD, REFR, CI, SA, SC, SS, ST, and SM 

Variable M SD 

   

TDD 0.26 0.05 

REFR 7.21 0.30 

CI 33.07 19.57 

SA 13.71 0.39 

SC 12.85 0.48 

SS 9.99 0.50 

ST 9.41 0.60 

SM 537.86 20.93 

  

 Descriptive statistics were also conducted on the source code attributes that were 

used to calculate the dependent variables.   The low risk category for the Cyclomatic 

complexity, 0 < McCabe CC <10 ranged from 0.71 to 0.75 with a mean of 0.74 (SD = 

0.01).   The medium risk category for the Cyclomatic complexity, 1 /11 < McCabe CC < 

20 (I/CC) ranged from 6.96 to 9.26 with a mean of 8.08 (SD = 0.67).  The highest risk 

category for the Cyclomatic complexity, 1 /21 < McCabe CC < 50 (I (CC) ranged from 

9.51 to 11.74 with a mean of 10.26 (SD = 0.48).  Similarly, the low risk category for 

coupling between objects, 0 < CBO < 6 ranged from 0.60 to 0.65 with a mean of 0.62 



www.manaraa.com

 

 

158

(SD = 0.01).  The medium risk category for coupling between objects, 7 < CB0 < 14 

ranged from 0.24 to 0.29 with a mean of 0.27 (SD = 0.01).  The highest risk category for 

the coupling between object, 1/ 15 < CBO < 50 ranged from 7.10 to 10.66 with a mean of 

9.23 (SD = 0.73).  The count of “Assert statements” per class or “Assert/Class” ranged 

from 5.12 to 8.71 with a mean of 7.31 (SD = 1.04).  Test Coverage ranged from 25.52 to 

32.01 with a mean of 29.83 (SD = 1.07).  The “1/ Unit Size” ranged from 0.31 to 0.36 

with a mean of 0.34 (SD = 0.01).  The “1/Cloning” ranged from 6.99 to 11.63 with a 

mean of 9.52 (SD = 1.41).  The actual cloning percentage ranged from 0.09 to 0.14 with a 

mean of 0.10 (SD = 0.02).  The normality of the regressors and the dependent variable 

were adequate for performing the analysis.   

The trend charts for all the source code properties were created over 61 software 

revisions or iterations.  Software complexity showed positive improvement for all of the 

risk categories.  Total percent of software classes with CC (0 < CC < 10) or low risk 

category increased from 71 to 75%.   Total percent of software classes with CC (11 < CC 

< 20) or medium risk category decreased from 14 to 11%; finally, the total percentage of 

software classes with CC (21 < CC < 50) or higher risk category decreased from 10 to 

9%.  This trend showed that the Agile development approach effectively yielded less 

complex software classes at the end of the development cycle, inferring improved 

software analyzability and changeability.  Secondly, CBO also showed positive 

improvement for all the three risk categories.  Total percent of software classes with CBO 

(0 < CBO < 6) or low risk category increased from 60 to 64%.  Total percent of software 



www.manaraa.com

 

 

159

classes with CBO (7 < CBO < 14) or medium risk category increased slightly from 25 to 

26%; and finally, the total percentage of software classes with CBO (15 < CC <50) or 

higher risk category decreased from 14 to 9%.  This trend showed that the Agile 

development approach effectively yielded more loosely coupled software classes at the 

end of the development cycle, inferring improved software changeability and stability.  

Code duplication trend showed that duplication increased from 9 to 14% inferring 

negative influence on software analyzability and changeability.  The overall increase in 

code duplication was, however, compensated by reduction in complexity and coupling of 

the software code.   

Lastly, the number of asserts indicating the unit test efforts trend showed positive 

improvement with an increase from 5.12 to 8.63.  The trend for test code coverage over 

61 iterations showed moderate increase from 27 to 29%.  The unit size or the size of the 

class showed positive trend with unit size reduction from 3.24 to 2.74 statements per 

class inferring the improvement in the software analyzability, changeability, and 

testability.  The large size of classes and methods continue to pose a higher risk as it 

directly influences the understanding by the software developers and maintainers (Lorenz 

& Kidd, 1994).  The smaller the size of the class, the more it becomes easy to understand, 

changes, and test for the development and maintenance resource. 

Multiple Regression Data Analysis 

This research study used a multiple regression approach on the ASDM related 

variables and variations observed in software analyzability, changeability, stability, and 



www.manaraa.com

 

 

160

testability to derive the best-fit model for analyzing the data set as per the methodology 

presented in Chapter 3.  The results are explicated in this section of the chapter. 

The computation of actual values for software analyzability, changeability, 

stability, and testability was accomplished using equations C, D, E, and F for all 61 

software development iterations and corresponding source code revisions.  Essentially, all 

61 revisions were analyzed using the tools listed in Table C6 to yield the values for all 

the listed software measures.  The ASDM-specific variables were then regressed over 

software analyzability, changeability, stability, testability, and resultant weighted 

maintainability.  The regression analysis results indicated that overall the ASDM is 

statistically significant predictor of software maintainability and its four sub-

characteristics.  The results in Table 27 also show that model predicted 82.8% of the 

variation in software maintainability at a 95% confidence level.   

Preliminary Analysis 

In preliminary analysis, the assumptions of linearity, normality, homoscedasticity, 

and absence of multicollinearity were assessed before conducting the regression analysis.   

Linearity was assessed by examining scatter plots; the assumption was verified.   To 

assess normality, skew and kurtosis values were assessed.   As tabulated in Table 16, 

skew was found to be less than the absolute value of 2 and kurtosis less than the absolute 

value of 7, meeting the assumption of normality (Kline, 2005).  The residual plots are 

shown for all Y variables in Figures 18 through 22.                



www.manaraa.com

 

 

161

           

Figure 18.  Residual plot for software analyzability (SA). 

       

Figure 19.  Residual plot for software changeability (SC).     

0.500.250.00-0.25-0.50

99.9

99

90

50

10

1

0.1

Residua l

P
e
r
c
e
n
t

14.514.013.513.0

0.50

0.25

0.00

-0.25

-0.50

F itted V a lue

R
e
s
id
u
a
l

0.40.20.0-0.2-0.4

12

9

6

3

0

Residua l

F
r
e
q
u
e
n
c
y

605550454035302520151051

0.50

0.25

0.00

-0.25

-0.50

O bser va tion O r der

R
e
si
d
u
a
l

No rmal P ro b ab ilit y  P lo t Versu s Fit s

H ist o g ram Versu s O rd er

Res idua l  P lots  for  S A  (Y 1 )

0.500.250.00- 0.25- 0.50

99.9

99

90

50

10

1

0.1

Re s idua l

P
e
r
c
e
n
t

13.513.012.512.011.5

0.50

0.25

0.00

- 0.25

- 0.50

F itte d  V a lue

R
e
s
id
u
a
l

0.40.20.0- 0.2- 0.4

16

12

8

4

0

Re s idua l

F
r
e
q
u
e
n
c
y

605550454035302520151051

0.50

0.25

0.00

- 0.25

- 0.50

O bse r v a t io n  O r de r

R
e
s
id
u
a
l

No rm a l P ro b ab ilit y  P lo t V e rsu s  Fit s

H is t o g ram Ve rsu s  O rd er

R e s idua l  P lo ts  fo r  S C  (Y 2 )



www.manaraa.com

 

 

162

 

Figure 20.  Residual plot for software stability (SS). 

0.80.40.0-0.4-0.8

99.9

99

90

50

10

1

0.1

Residual

P
e
r
c
e
n
t

10.510.09.59.08.5

0.6

0.3

0.0

-0.3

-0.6

Fitted Value

R
e
s
id
u
a
l

0.60.40.20.0-0.2-0.4

10.0

7.5

5.0

2.5

0.0

Residual

F
r
e
q
u
e
n
c
y

605550454035302520151051

0.6

0.3

0.0

-0.3

-0.6

Observation Order

R
e
s
id
u
a
l

Normal Probability Plot Versus Fit s

Histogram Versus Order

Residual Plots for ST (Y4)

 

Figure 21.  Residual plot for software testability (ST). 

0.80.40.0-0.4-0.8

99.9

99

90

50

10

1

0.1

Residual

P
e
r
c
e
n
t

11.010.510.09.59.0

0.50

0.25

0.00

-0.25

-0.50

Fitted Value

R
e
s
id
u
a
l

0.60.40.20.0-0.2-0.4

16

12

8

4

0

Residual

F
r
e
q
u
e
n
c
y

605550454035302520151051

0.50

0.25

0.00

-0.25

-0.50

Observation Order

R
e
s
id
u
a
l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for SS (Y3)



www.manaraa.com

 

 

163

 

Figure 22.  Residual plot for software maintainability (SM). 

Homoscedasticity was thus assessed using values for error residuals and viewing 

the scatter plots of the error residuals.   The scatter plot appeared to be rectangular, and 

thus, the assumption was met. The assumption of absence of multicollinearity was also 

assessed by examining the Variance Inflation Factors (VIF).   

 Additionally, a correlation matrix was created to assess multicollinearity and to be 

certain an r < .80 was observed among the independent variables.  

 

 

 

 

 

30150-15-30

99.9

99

90

50

10

1

0.1

Residual

P
e
r
c
e
n
t

580560540520500

20

10

0

-10

-20

Fitted Value

R
e
s
id
u
a
l

20100-10-20

16

12

8

4

0

Residual

F
r
e
q
u
e
n
c
y

605550454035302520151051

20

10

0

-10

-20

Observation Order

R
e
s
id
u
a
l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for SM (Y)



www.manaraa.com

 

 

164

Table 16 

Skew and Kurtosis for TDD, REFR, CI, SA, SC, SS, ST, and SM 

Variable Skew Kurtosis 

TDD -0.40 -0.81 

REFR 0.79 0.12 

CI 0.17 -1.21 

SA -0.77 0.77 

SC -1.15 0.58 

SS -1.21 0.64 

ST -1.08 0.06 

SM -1.24 0.80 

 

Results of the correlation matrix are presented in Table 17. All the assumptions 

related to homoscedasticity, linearity, and normality was validated before conducting the 

regression analysis using MiniTab tool. VIF values are shown in all the regression 

models below. These are also tabulated in Appendix K showing almost no 

multicollinearity with all the values close to 1 (1.074, 1.138, 1.205 respectively for TDD, 

REFR, and CI variables). 

 

 

 



www.manaraa.com

 

 

165

Table 17 

Pearson Product Moment Correlations among TDD, REFR, and CI  

Variable TDD REFR 

   

REFR -.12  

CI .26* -.35** 

Note.  *p < .05, **p <.01. 

  

Research Question One 

RQ1: How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software analyzability (SA)? 

 To assess the first research question, one multiple regression analysis was 

conducted.   The result of the multiple regression was significant, F (3, 57) = 54.50, p < 

.001, suggesting that the model predicted (R2) 74.1% of the variance in SA.  The 

coefficient of determination, or R2 value, for this regression model measures the 

proportion of the variation in the dependent variable, SA, which is explained by the 

combination of the independent variables (TDD, REFR, and CI) in this regression model.  

Further analysis revealed that TDD successfully predicted SA, B = 0.19, p < .001, 

suggesting that for every point/percent increase in TDD, SA increased by 0.19 

points/percent.   Also, REFR or refactoring variable successfully predicted SA, B = 0.30, 



www.manaraa.com

 

 

166

p < .001, suggesting that for every point/percent increase in REFR, SA increased by 0.30 

points/percent.   Lastly, CI is not shown to be a significant predictor looking at the p 

value of .561 (p >.001).   The regression equation is SA = 13.71 + 0.19 * TDD + .30 * 

REFR.   The null hypothesis is rejected; the model is significant as a whole, and both 

TDD and REFR offered a unique contribution to predicting SA.  Results of the multiple 

regression are presented in Table 18. 

Table 18 

Multiple Regression for TDD, REFR, and CI Predicting SA 

Model     B SE β t p 

      

TDD 0.19 0.03 .49 7.01 .001 

REFR 0.30 0.03 .78 10.78 .001 

CI 0.02 0.03 .04 0.59 .561 

Note.  F (3, 57) = 54.50, p < .001, R2 = 0.741.   

 



www.manaraa.com

 

 

167

Table 19 

Analysis of Variance for software analyzability (SA) 

Analysis of Variance 

Source DF 

Sum of Mean 

F value Pr > F squares square 

Model 3 6.8262 2.2754 54.50 <.0001 

Error 57 2.3799 0.0418     

Corrected total 60 9.2061       

  R-square 74.1%     

  Adj.  R-sq 72.8%     

 
Predictor Coef SE Coef T P VIF 

Constant 13.7151 0.0262 524.23 0.000   

TDD (X1) 0.19079 0.02731 6.99 0.000 1.074 

REFR (X2) 0.30394 0.02815 10.80 0.000 1.138 

CI (X3) 0.01700 0.02895 0.59 0.559 1.205 

 

Research Question 2 

RQ2: How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software changeability (SC)? 



www.manaraa.com

 

 

168

 To assess research question 2, one multiple regression analysis was conducted.  

The result of the multiple regression was significant, F (3, 57) = 126.70, p < .001, 

suggesting that the model predicted (R2) 87.0% of the variance in SC.  Further analysis 

revealed that TDD successfully predicted SC, B = 0.40, p < .001, suggesting that for 

every point increase in TDD, SC increased by 0.40 points.  Also, REFR successfully 

predicted SC, B = 0.25, p < .001, suggesting that for every point increase in REFR, SC 

increased by 0.25 points.   CI is not shown to be a significant predictor.   The regression 

equation is SC = 12.85+ .40 * TDD + .25 * REFR.   The null hypothesis is rejected; the 

model was significant as a whole, and both TDD and REFR offered a unique contribution 

to predicting SC.  Results of the multiple regression are presented in Table 20. 

Table 20 

Multiple Regression for TDD, REFR, and CI Predicting SC 

Model     B SE β t p 

      

TDD 0.40 0.02 .83 16.85 .001 

REFR 0.25 0.02 .52 10.29 .001 

CI 0.01 0.03 .02 0.40 .693 

Note.  F (3, 57) = 126.70, p < .001, R2 = 0.870.   

 

 

 



www.manaraa.com

 

 

169

Table 21  

Analysis of Variance for software changeability (SC) 

Analysis of Variance 

Source DF 

Sum of Mean 

F value Pr > F squares square 

Model 3 11.9247 3.9749 126.70 <.0001 

Error 57 1.7882 0.0314     

Corrected total 60 13.7129       

  R-square 87.0%     

  Adj.  R-sq 86.3%     

 
Predictor Coef SE Coef T P VIF 

Constant 12.8533 0.0227 556.77 0.000   

TDD (X1) 0.39765 0.02367 16.80 0.000 1.074 

REFR (X2) 0.25085 0.02440 10.28 0.000 1.138 

CI (X3) 0.01044 0.02510 0.42 0.679 1.205 

 

Research Question 3 

RQ3: How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software stability (SS)? 



www.manaraa.com

 

 

170

 To assess research question 3, one multiple regression analysis was conducted.   

The result of the multiple regression was significant, F (3, 57) = 73.90, p < .001, 

suggesting that the model predicted (R2) 79.6% of the variance in SS.  Further analysis 

revealed that TDD successfully predicted SS, B = 0.42, p < .001, suggesting that for 

every point increase in TDD, SS increased by 0.42 points.  Also, REFR successfully 

predicted SS, B = 0.19, p < .001, suggesting that for every point increase in REFR, SS 

increased by 0.19 points.   CI is not shown to be a significant predictor.  The regression 

equation is SS = 9.99 + .42 * TDD + .19 * REFR.   The null hypothesis is rejected; the 

model was significant as a whole, and both TDD and REFR offered a unique contribution 

to predicting SS.  Results of the multiple regression are presented in Table 22. 

Table 22 

Multiple Regression for TDD, REFR, and CI Predicting SS 

Model     B SE β t p 

TDD 0.42 0.03 .85 13.72 .001 

REFR 0.19 0.03 .38 5.95 .001 

CI 0.01 0.03 .01 0.21 .838 

      

Note.  F (3, 57) = 73.90, p < .001, R2 = 0.796.   

 



www.manaraa.com

 

 

171

Table 23  

Analysis of Variance for software stability (SS) 

Analysis of Variance 

Source DF 

Sum of Mean 

F value Pr > F squares square 

Model 3 11.7998 3.9333 73.90 <.0001 

Error 57 3.0338 0.0532     

Corrected total 60 14.8336       

  R-square 79.6%     

  Adj.  R-sq 78.5%     

 
Predictor Coef SE Coef T P VIF 

Constant 9.99151 0.02954 338.25 0.000   

TDD (X1) 0.42227 0.03083 13.70 0.000 1.074 

REFR (X2) 0.18906 0.03178 5.95 0.000 1.138 

CI (X3) 0.00724 0.03269 0.22 0.826 1.205 

 

Research Question 4 

RQ4: How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software testabiliy (ST)? 



www.manaraa.com

 

 

172

 To assess research question 4, one multiple regression analysis was conducted.  

The result of the multiple regression was significant, F (3, 57) = 98.43, p < .001, 

suggesting that the model predicted (R2) 83.9% of the variance in ST.  Further analysis 

revealed that TDD successfully predicted ST, B = 0.54, p < .001, suggesting that for 

every point increase in TDD, ST increased by 0.54 points.  Also, REFR successfully 

predicted ST, B = 0.16, p < .001, suggesting that for every point increase in REFR, ST 

increased by 0.16 points.  From the p value for CI variable, CI is not shown to be a 

significant predictor.  The regression equation is ST = 9.41 + .54 * TDD + .16 * REFR.   

The null hypothesis is rejected; the model was significant as a whole, and both TDD and 

REFR offered a unique contribution to predicting ST.  Results of the multiple regression 

are presented in Table 24 along with ANOVA results tabulated in Table 25 below. 

Table 24 

Multiple Regression for TDD, REFR, and CI Predicting ST 

Model     B SE β t P 

      

TDD 0.54 0.03 .91 16.47 .001 

REFR 0.16 0.03 .26 4.63 .001 

CI 0.00 0.04 .00 -0.04 .970 

Note.  F (3, 57) = 98.43, p < .001, R2 = 0.839.   

 

  



www.manaraa.com

 

 

173

Table 25 

Analysis of Variance for software testability (ST) 

Analysis of Variance 

Source DF 

Sum of Mean 

F value Pr > F squares square 

Model 3 17.8760 5.9587 98.43 <.0001 

Error 57 3.4505 0.0605     

Corrected total 60 21.3265       

  R-square 83.8%     

  Adj.  R-sq 83.0%     

 
Predictor Coef SE Coef T P VIF 

Constant 9.41236 0.03150 298.79 0.000   

TDD (X1) 0.54048 0.03288 16.44 0.000 1.074 

REFR (X2) 0.15790 0.03390 4.66 0.000 1.138 

CI (X3) -0.00009 0.03486 -0.00 0.998 1.205 

 

Research Question 5 

RQ5: How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact resultant software maintainability (SM)? 



www.manaraa.com

 

 

174

 To assess research question 5, one multiple regression analysis was conducted.  

The result of the multiple regression was significant, F (3, 57) = 91.50, p < .001, 

suggesting that the model predicted (R2) 82.8% of the variance in SM.  Further analysis 

revealed that TDD successfully predicted SM, B = 17.05, p < .001, suggesting that for 

every point increase in TDD, SM increased by 17.05 points.  Also, REFR successfully 

predicted SM, B = 10.68 p < .001, suggesting that for every point increase in REFR, SM 

increased by 10.68 points.   CI is not shown to be a significant predictor.    

Table 26 

Multiple Regression for TDD, REFR, and CI Predicting SM 

Model     B SE β t p 

TDD 17.05 1.19 .81 14.30 .001 

REFR 10.68 1.23 .51 8.70 .001 

CI 0.28 1.26 .01 0.22 .825 

      

Note.  F (3, 57) = 91.46, p < .001, R2 = 0.828.   

The regression equation is SM = 537.86 + 17.05 * TDD + 10.68 * REFR.   The 

null hypothesis is rejected; the model was significant as a whole, and both TDD and 

REFR offered a unique contribution to predicting SA.  Results of the multiple regression 

are presented in Table 26 above. 

The strength of the software maintainability is further reinforced by the generated  

F value of 91.50 for F (3, 57), which indicates that the model is statistically proven to be 



www.manaraa.com

 

linear.  The F table put forward by 

critical value for  df 

indicates that in combination, the coefficients of the regressors are greater than zero (0), 

and thus there is a linear relationship between software analyzability, changeability, 

stability, and testability, and the independent variables of ASDM.  

reinforcement is addressed by the 

statistical significance of the model in aggregate.

Table 27 

Analysis of Variance for software maintainability (SM)

Source 

Model 

Error 

Corrected total 

 

 

 

Predictor Coef

Constant 537.865

TDD (X1) 17.024

REFR (X2) 10.679

CI (X3) 0.29

 

table put forward by Aczel and Sounderpandian (2006) showed that the 

df at a 95%-confidence level is 2.57.  The f-value obtained also 

indicates that in combination, the coefficients of the regressors are greater than zero (0), 

relationship between software analyzability, changeability, 

and the independent variables of ASDM.  Further, statistical 

reinforcement is addressed by the p value, which is less than 5%, also indicating the 

nce of the model in aggregate. 

Analysis of Variance for software maintainability (SM) 

Analysis of Variance 

DF 

Sum of Mean 

F valuesquares square 

3 21771.8 7257.3 91.50

57 4520.7 79.3 

60 26292.4   

 R-square 82.8%   

 Adj.  R-sq 81.9%   

Coef SE Coef T P 

537.865 1.14 471.71 0.000 

17.024 1.19 14.3 0.000 

10.679 1.227 8.7 0.000 

0.29 1.262 0.23 0.819 

 175

Sounderpandian (2006) showed that the 

value obtained also 

indicates that in combination, the coefficients of the regressors are greater than zero (0), 

relationship between software analyzability, changeability, 

Further, statistical 

value, which is less than 5%, also indicating the 

F value Pr > F 

91.50 <.0001 

    

    

  

  

VIF 

  

1.074 

1.138 

1.205 



www.manaraa.com

 

 

176

The p value for CI is .819 inferring that the CI variable is insignificant predictor 

of software maintainability.  Based on the above regression results, all the coefficients are 

statistically different from 0, with the exception of continuous integration (CI) variable 

with value of .26 that is close to 0.  More important, and related to testing the hypotheses 

(H13, H14, H15), is the fact that the variation in software maintainability (SM) is 

statistically explained by TDD and REFR.  All other independent variables except CI, the 

TDD and REFR are statistically significant at the 95% confidence level measured by the 

p values.  The p values are measured for df = 57 against an alpha (α) of 5%.  This 

statistical significance is highlighted in Table 27 with ANOVA results.  The low variance 

inflation factor (VIF) of 1 (1.074, 1.138, 1.205 respectively for TDD, REFR, and CI) as 

seen in all five regression models, and collinearity diagnostics illustrate that no 

multicollinearity exists between the independent variables.   

Lastly, the ANOVA was conducted for the adjusted model without CI variable in 

the regression. The TDD and REFR are significant at the 95% confidence interval by the 

p values. The p values are measured for df = 58 against an alpha (α) of 5%.  This 

statistical significance is highlighted in Table 28 with ANOVA results.  The low variance 

inflation factor (VIF) of 1 (1.014) for TDD and REFR as seen in this adjusted regression 

model, and collinearity diagnostics illustrate that no multicollinearity exists between the 

independent variables.  The regression equation for this adjusted model is SM (Y) = 538 

+ 17.1 TDD (X1) + 10.6 REFR (X2). 

 



www.manaraa.com

 

 

177

Table 28 

Adjusted model without CI - Analysis of Variance for software maintainability (SM) 

Analysis of Variance 

Source DF 

Sum of Mean 

F value Pr > F squares square 

Model 2 21768 10884 139.51 <.0001 

Error 58 4525 78     

  R-square 82.8%     

  Adj.  R-sq 82.2%     

 

Predictor Coef SE Coef T P VIF 

Constant 537.865 1.131 475.61 0.000   

TDD (X1) 17.089 1.147 14.90 0.000 1.014 

REFR (X2) 10.585 1.148 9.22 0.000 1.014 

 

The results are also tabulated in appendix L. The result shows that this adjusted 

model is the best model that explains the variation in software maintainability with R2 of 

82.8%.   

Hypotheses Testing 

Using the results shown in ANOVA tables, the following hypotheses were tested 

for statistical significance based on the t and p values of the independent coefficients, as 

shown in Chapter 1 of this study.  The criteria for the hypothesis tests were based on df = 

57 at 95%-confidence level.  In addition, the direction of the relationship between 



www.manaraa.com

 

software analyzability, changeability, stability, testability, and maintainability and the

independent variables were also tested.  

Hypothesis 1 

 : TDD

 : TDD

Based on the results obtained, the alternative hypothesis

coefficient for TDD has a 

critical value of 1.67.  Since I tested this analysis at a 95%

was .001, below 5%.  The results led to the conclu

relationship between TDD and SA.  At the same time, the null hypothesis 

rejected.  Further, the results indicate that change in TDD is positively related to SA so 

that when TDD increases by a percentage point (1%), SA increases by approximately 

0.19%.   

Hypothesis 2 

: Refactoring

 :  Refactoring

In this test, the alternative hypothesis 

value of 0.001 at a 95% confidence level.  The 

value (10.78) was above the 

 was rejected.  The test of the second hypotheses illustrates that a change in REFR 

software analyzability, changeability, stability, testability, and maintainability and the

independent variables were also tested.   

: TDD has no influence on the Software Analyzability.

: TDD has a positive influence on the Software Analyzability.

Based on the results obtained, the alternative hypothesis is accepted 

coefficient for TDD has a p value of 0.001 and a t value of 7.01, which is above the 

critical value of 1.67.  Since I tested this analysis at a 95%- confidence level, the 

was .001, below 5%.  The results led to the conclusion that  and there is a 

relationship between TDD and SA.  At the same time, the null hypothesis 

rejected.  Further, the results indicate that change in TDD is positively related to SA so 

increases by a percentage point (1%), SA increases by approximately 

: Refactoring has no influence on the Software Analyzability.

Refactoring has a positive influence on the Software A

In this test, the alternative hypothesis   was also accepted based on a 

value of 0.001 at a 95% confidence level.  The p value was .001, below 5%, while the 

value (10.78) was above the t critical of 1.67.  At the same time the null hypothesis 

was rejected.  The test of the second hypotheses illustrates that a change in REFR 

 178

software analyzability, changeability, stability, testability, and maintainability and the 

nalyzability. 

nalyzability. 

is accepted because the 

value of 7.01, which is above the t 

confidence level, the p value 

and there is a 

relationship between TDD and SA.  At the same time, the null hypothesis  was 

rejected.  Further, the results indicate that change in TDD is positively related to SA so 

increases by a percentage point (1%), SA increases by approximately 

nalyzability. 

on the Software Analyzability. 

was also accepted based on a p 

value was .001, below 5%, while the t 

.  At the same time the null hypothesis 

was rejected.  The test of the second hypotheses illustrates that a change in REFR 



www.manaraa.com

 

is positively related to software analyzability so that when refactoring efforts 

a percentage point (1%), 

Hypothesis 3 

: CI has no influence on the Software A

: CI has a positive

For these hypotheses tes

regression analysis generated a 

than the 5% allowed for this type of test.  At the same time, the null hypothesis was not 

rejected because

confidence level.  The direction of the sign in the test of hypotheses 3 was positive, 

meaning that when a CI increases, SA increases.  However, due to the statistical 

insignificance of CI, there is no meaningful elasticity explanation.

Hypothesis 4 

: TDD

: TDD

For this test, the alternative hypothesis 

coefficient for TDD on the software changeability had a 

and a t value at t(57)  of 16.80.  

the p value was .001, below 5%, while the 

1.67.  The null hypothesis 

change in TDD is positively related to the SA.  Therefore when the test drive

is positively related to software analyzability so that when refactoring efforts 

a percentage point (1%), software analyzability level increases by approximately 0.30%.  

has no influence on the Software Analyzability.  

has a positive influence on the Software Analyzability

For these hypotheses tests, the null hypothesis was not rejected because 

regression analysis generated a t value of 0.59.  Also, the p value of .561 

than the 5% allowed for this type of test.  At the same time, the null hypothesis was not 

because the variable could be accepted when tested at a lower 

confidence level.  The direction of the sign in the test of hypotheses 3 was positive, 

meaning that when a CI increases, SA increases.  However, due to the statistical 

e is no meaningful elasticity explanation. 

: TDD has no influence on the Software Changeability.

: TDD has a positive influence on the Software Changeability.

For this test, the alternative hypothesis was accepted because 

coefficient for TDD on the software changeability had a p value of approximately 0.001 

of 16.80.  As this hypothesis was tested at a 95%-confidence level, 

value was .001, below 5%, while the t value of 16.80 was beyond the 

.  The null hypothesis was rejected.  The test of hypotheses 4 illustrate that 

change in TDD is positively related to the SA.  Therefore when the test drive

 179

is positively related to software analyzability so that when refactoring efforts increases by 

software analyzability level increases by approximately 0.30%.   

.   

nalyzability.   

because the 

 was also higher 

than the 5% allowed for this type of test.  At the same time, the null hypothesis was not 

the variable could be accepted when tested at a lower 

confidence level.  The direction of the sign in the test of hypotheses 3 was positive, 

meaning that when a CI increases, SA increases.  However, due to the statistical 

hangeability. 

hangeability. 

because the 

value of approximately 0.001 

confidence level, 

value of 16.80 was beyond the t critical of 

was rejected.  The test of hypotheses 4 illustrate that 

change in TDD is positively related to the SA.  Therefore when the test driven 



www.manaraa.com

 

development efforts during the Agile development increases by 1%, software 

changeability increased by approximately 0.40%.  In summary, the capability of the 

software to allow the identified change to be implemented was influenced positively by 

TDD practice. 

Hypothesis 5 

: Refactoring

: Refactoring

The null hypothesis was rejected based on the results. 

tests, the alternative hypothesis 

had a p value of <0.001 and 

supporting this acceptance.  The test

positive relationship with software changeability.  That is, when TDD increases by 1%, 

SC or software changeability 

Hypothesis 6 

: CI has no influence on the Software Changeability.  

: CI has a positive

For these hypotheses tests, the null hypothesis was not rejected 

regression analysis generated a 

Also, the p value of .693 

alternative hypothesis 

integration and software analyzability 

development efforts during the Agile development increases by 1%, software 

changeability increased by approximately 0.40%.  In summary, the capability of the 

software to allow the identified change to be implemented was influenced positively by 

: Refactoring has no influence on the Software Changeability.

: Refactoring has a positive influence on the Software C

The null hypothesis was rejected based on the results. From the final hypotheses 

tests, the alternative hypothesis  was also accepted.  The coefficient for refactoring 

value of <0.001 and t value of 10.29 at t(57)  measured at a 95%-confidence level 

supporting this acceptance.  The test of elasticity for the coefficient of refactoring 

positive relationship with software changeability.  That is, when TDD increases by 1%, 

SC or software changeability increases by approximately 0.25%.   

has no influence on the Software Changeability.  

has a positive influence on the Software Changeability.  

For these hypotheses tests, the null hypothesis was not rejected because 

regression analysis generated a t value of 0.40 that is lower than the critical value of 1.67.  

 was also higher than the 5% allowed for this type of test.  The 

 that there exists a relationship between continuous 

and software analyzability could not be accepted.  At the same time, the null 

 180

development efforts during the Agile development increases by 1%, software 

changeability increased by approximately 0.40%.  In summary, the capability of the 

software to allow the identified change to be implemented was influenced positively by 

hangeability. 

on the Software Changeability. 

From the final hypotheses 

was also accepted.  The coefficient for refactoring 

confidence level 

of elasticity for the coefficient of refactoring has a 

positive relationship with software changeability.  That is, when TDD increases by 1%, 

has no influence on the Software Changeability.   

on the Software Changeability.   

because the 

value of 0.40 that is lower than the critical value of 1.67.  

was also higher than the 5% allowed for this type of test.  The 

that there exists a relationship between continuous 

At the same time, the null 



www.manaraa.com

 

hypothesis was not rejected

confidence level.  The direction of the sign in the test of hypotheses 6 was positive, 

meaning that when a CI increases software changeability increase.  However, due to the 

statistical insignificance of CI

Hypothesis 7 

: TDD

: TDD

For this test, the alternative hypothesis 

for TDD on the software stability had a 

t(57)  of 13.71.  As this hypothesis was tested at a 95%

.001, below 5%, while the 

hypothesis was thus rejected.  The test of hypotheses 7 illus

TDD is positively related to the SS.  Therefore when the test driven development efforts 

during the Agile development increases by 1%, software stability increase by 

approximately 0.42%.  In summary, 

modifications was influenced positively by TDD practice within the Agile

development project. 

Hypothesis 8 

: Refactoring

: Refactoring

hypothesis was not rejected because it may be accepted when tested at a lower 

confidence level.  The direction of the sign in the test of hypotheses 6 was positive, 

eaning that when a CI increases software changeability increase.  However, due to the 

statistical insignificance of CI, there is no meaningful elasticity explanation.

: TDD has no influence on the Software Stability (SS)

: TDD has a positive influence on the Software Stability (SS)

For this test, the alternative hypothesis was accepted since the coefficient 

for TDD on the software stability had a p value of approximately 0.001 and a 

this hypothesis was tested at a 95%-confidence level, the 

.001, below 5%, while the t value of 13.70 was beyond the t critical of 1.67

was thus rejected.  The test of hypotheses 7 illustrate that change in 

TDD is positively related to the SS.  Therefore when the test driven development efforts 

during the Agile development increases by 1%, software stability increase by 

approximately 0.42%.  In summary, software capability to avoid unexpected effects from 

was influenced positively by TDD practice within the Agile

: Refactoring has no influence on the Software Stability

: Refactoring has a positive influence on the Software Stability

 181

it may be accepted when tested at a lower 

confidence level.  The direction of the sign in the test of hypotheses 6 was positive, 

eaning that when a CI increases software changeability increase.  However, due to the 

, there is no meaningful elasticity explanation. 

has no influence on the Software Stability (SS). 

on the Software Stability (SS). 

was accepted since the coefficient 

value of approximately 0.001 and a t value at 

confidence level, the p value was 

1.67.  The null 

trate that change in 

TDD is positively related to the SS.  Therefore when the test driven development efforts 

during the Agile development increases by 1%, software stability increase by 

cted effects from 

was influenced positively by TDD practice within the Agile-driven 

has no influence on the Software Stability. 

on the Software Stability. 



www.manaraa.com

 

From the hypotheses tests, the 

coefficient for refactoring had a 

a 95%-confidence level.  The 

The test of elasticity for the coefficient of refactoring 

software stability.  That is, when REFR increases by 1%, SS 

0.19%.   

Hypothesis 9 

: CI has no influence on the Software Stability.  

: CI has a positive

For these hypotheses tests, the null hypothesis was not rejected 

regression analysis generated a

Also, the p value of .826 

the same time, the null hypothesis was not rejected

be accepted when tested at a lower confidence level.  The direction of the sign in the test 

of hypotheses 9 was positive, meaning that when a CI increases software stability 

increases.  However, due to the statistical insignificance of CI

elasticity explanation. 

Hypothesis 10 

: TDD

: TDD

From the hypotheses tests, the alternative hypothesis  was accepted

coefficient for refactoring had a p value of <0.001 and t value at t(57)  of 5.29  measured at 

confidence level.  The t value for REFR variable was above the t critical value.  

The test of elasticity for the coefficient of refactoring has a positive relationship with 

software stability.  That is, when REFR increases by 1%, SS increases by approximately 

has no influence on the Software Stability.   

has a positive influence on the Software Stability.  

For these hypotheses tests, the null hypothesis was not rejected because 

regression analysis generated a t value of 0.22 that is lower than critical value of 1.67.  

 was also higher than the 5% allowed for this type of test.   At 

the same time, the null hypothesis was not rejected because the variable could 

when tested at a lower confidence level.  The direction of the sign in the test 

of hypotheses 9 was positive, meaning that when a CI increases software stability 

increases.  However, due to the statistical insignificance of CI, there is no meaningful 

: TDD has no influence on the Software Testability

: TDD has a positive influence on the Software Testability

 182

was accepted.  The 

of 5.29  measured at 

critical value.  

has a positive relationship with 

increases by approximately 

on the Software Stability.   

because the 

value of 0.22 that is lower than critical value of 1.67.  

was also higher than the 5% allowed for this type of test.   At 

the variable could 

when tested at a lower confidence level.  The direction of the sign in the test 

of hypotheses 9 was positive, meaning that when a CI increases software stability 

, there is no meaningful 

has no influence on the Software Testability. 

on the Software Testability. 



www.manaraa.com

 

From the final hypotheses tests, the alternative hypothesis 

accepted.  The coefficient for TDD had a 

16.44 measured at a 95%

The test of elasticity for the coefficient of TDD 

testability.  That is, when TDD increases by 1%, ST 

In summary, software capability to enable modified software to be validated

influenced positively by TDD practice within th

Hypothesis 11 

: Refactoring

: Refactoring

From the hypotheses tests, the 

coefficient for refactoring had a 

a 95%-confidence level.  The 

elasticity for the coefficient of refactoring 

testability.  That is, when REFR increases by 1%, SC 

Software capability to enable modified software to be validated

positively by refactoring practice within the Agile

Hypothesis 12 

: CI

: CI

From the final hypotheses tests, the alternative hypothesis 

accepted.  The coefficient for TDD had a p value less than 0.001 and t value at 

16.44 measured at a 95%-confidence level.  The t value was above the t critical of

The test of elasticity for the coefficient of TDD has a positive relationship with software 

testability.  That is, when TDD increases by 1%, ST increases by approximately 0.54%.  

software capability to enable modified software to be validated

influenced positively by TDD practice within the Agile-driven development project.

: Refactoring has no influence on the Software Testability

: Refactoring has a positive influence on the Software Testability

From the hypotheses tests, the alternative hypothesis  was accepted.

coefficient for refactoring had a p value of <0.001 and t value of 4.66 at t

confidence level.  The t value was above the t critical of 1.67.  The test of 

elasticity for the coefficient of refactoring has a positive relationship with software 

testability.  That is, when REFR increases by 1%, SC increases by approximately 0.16%.  

Software capability to enable modified software to be validated or tested was influenced 

positively by refactoring practice within the Agile-driven development project.

: CI has no influence on the Software Testability.   

: CI has a positive influence on the Software Testability.  

 183

 was also 

value at t(57)  of 

critical of 1.67.  

has a positive relationship with software 

increases by approximately 0.54%.  

software capability to enable modified software to be validated was 

driven development project. 

has no influence on the Software Testability. 

on the Software Testability. 

was accepted.  The 

t(57)  measured at 

.  The test of 

has a positive relationship with software 

increases by approximately 0.16%.  

r tested was influenced 

driven development project. 

 

on the Software Testability.   



www.manaraa.com

 

For these hypotheses tests, the null hypothesis was not rejected 

regression analysis generated a 

p value of .998 was also higher than the 5% allowed for this type of test.  The alternative 

hypothesis  that there exists a relationship between continuous integration and 

software testability was rejected.  At the same time, the null hypothesis was not 

because the variable could be accepted when tested at a lower confidence 

level.  The direction of the sign in the test of hypotheses 12 was negative, meaning that 

when CI increases software testability decreases.  However, due to the s

insignificance of CI, there is no meaningful elasticity explanation.

Hypothesis 13 

: TDD

Maintainability. 

: TDD

Maintainability. 

From the final hypotheses tests, the alternative hypothesis 

accepted.  The coefficient for TDD had a 

measured at a 95%-confidence level.  The 

The test of elasticity for the coefficient of TDD 

maintainability.  That is, when TDD increases by 1%, ST or software maintainability 

increases by approximately 17.02

system or component that 

For these hypotheses tests, the null hypothesis was not rejected because 

regression analysis generated a t value of -0.004 less than critical value of 1.67.  Also, the 

was also higher than the 5% allowed for this type of test.  The alternative 

that there exists a relationship between continuous integration and 

software testability was rejected.  At the same time, the null hypothesis was not 

the variable could be accepted when tested at a lower confidence 

level.  The direction of the sign in the test of hypotheses 12 was negative, meaning that 

when CI increases software testability decreases.  However, due to the statistical 

, there is no meaningful elasticity explanation. 

: TDD has no influence on the resultant weighted Software 

: TDD has a positive influence on the resultant weighted Software 

From the final hypotheses tests, the alternative hypothesis 

accepted.  The coefficient for TDD had a p value of <0.001 and t value of 14.30 at 

confidence level.  The t value was above the t critical value of 1.67.  

The test of elasticity for the coefficient of TDD has a positive relationship with software 

maintainability.  That is, when TDD increases by 1%, ST or software maintainability 

increases by approximately 17.02%.  In summary, software capability of a

that can be understood, modified to correct faults, improve 

 184

because the 

0.004 less than critical value of 1.67.  Also, the 

was also higher than the 5% allowed for this type of test.  The alternative 

that there exists a relationship between continuous integration and 

software testability was rejected.  At the same time, the null hypothesis was not rejected

the variable could be accepted when tested at a lower confidence 

level.  The direction of the sign in the test of hypotheses 12 was negative, meaning that 

tatistical 

has no influence on the resultant weighted Software 

eighted Software 

 was also 

value of 14.30 at t(57)  

critical value of 1.67.  

has a positive relationship with software 

maintainability.  That is, when TDD increases by 1%, ST or software maintainability 

of a software 

modified to correct faults, improve 



www.manaraa.com

 

performance or other attributes, or adapt to a changed environment

positively by TDD practice within the Agile

higher the maintainability of the software, the lower is the maintenance efforts and cost 

incurred by IT management to maintain it.  

Hypothesis 14 

: Refactoring

: Refactoring

Maintainability. 

From the hypotheses tests, the 

coefficient for refactoring had a 

a 95%-confidence level.  The 

elasticity for the coefficient of refactoring 

maintainability.  That is, when REFR increases 

increases by approximately 10.68%.  

Hypothesis 15 

: CI

: CI

For these hypotheses tests, the null hypothesis was not rejected 

regression analysis generated a 

Also, the p value of .819 

alternative hypothesis 

performance or other attributes, or adapt to a changed environment was influenced 

positively by TDD practice within the Agile-driven development project.  Note that 

higher the maintainability of the software, the lower is the maintenance efforts and cost 

incurred by IT management to maintain it.   

: Refactoring has no influence on the Software Maintaina

: Refactoring has a positive influence on the Software 

From the hypotheses tests, the alternative hypothesis  was accepted

coefficient for refactoring had a p value of <0.001 and t value at t(57)  of 8.70  measured at 

confidence level.  The t value was above the t critical of 1.67.  The test of 

elasticity for the coefficient of refactoring has a positive relationship with software 

maintainability.  That is, when REFR increases by 1%, SC or software maintainability 

increases by approximately 10.68%.   

: CI has no influence on the Software Maintainability.  

: CI has a positive influence on the Software Maintainability.  

For these hypotheses tests, the null hypothesis was not rejected because 

regression analysis generated a t value of 0.23 that is lower than critical value of 1.67.  

 was also higher than the 5% allowed for this type of test.  T

 that there exists a relationship between continuous 

 185

was influenced 

driven development project.  Note that 

higher the maintainability of the software, the lower is the maintenance efforts and cost 

has no influence on the Software Maintainability. 

on the Software 

was accepted.  The 

of 8.70  measured at 

.  The test of 

has a positive relationship with software 

by 1%, SC or software maintainability 

has no influence on the Software Maintainability.   

on the Software Maintainability.   

because the 

value of 0.23 that is lower than critical value of 1.67.  

was also higher than the 5% allowed for this type of test.  The 

that there exists a relationship between continuous 



www.manaraa.com

 

integration and software maintainability was therefore rejected.  At the same time, the 

null hypothesis was not rejected

when tested at a lower confidence level.  The direction of the sign in the test of 

hypotheses 15 was positive, meaning that when CI increases, software maintainability 

increases.  However, due to the statistical insignificance of CI

elasticity explanation. Lastly, employing the results from ANOVA table and the 

interpretation of coefficient results, the analysis yielded the following regression 

equation: 

SM (Y) = 537.86 + 17.00 * T

The CI is not a statistically viable predictor in this model.  

The research results indicate that TDD and REFR variables that characterized 

ASDM, with the exception of the CI variable, are significant predictors of software 

analyzability, changeability, stability, testability, and resultant maintainability for the 

software developed using Agile development approach.  The model explains 82.8% of 

the variability in software maintainability from the independent variables regressed.  

Further, the CI variable was not a statistically significant predictor of software 

maintainability in the generated regression model

In conclusion, TDD and REFR practices do play a significant role in the way 

software maintainability and constituting characte

software development process.  Note that software maintainability is the internal quality 

integration and software maintainability was therefore rejected.  At the same time, the 

null hypothesis was not rejected because the hypotheses may be accepted 

when tested at a lower confidence level.  The direction of the sign in the test of 

hypotheses 15 was positive, meaning that when CI increases, software maintainability 

increases.  However, due to the statistical insignificance of CI, there is no meaningful 

Lastly, employing the results from ANOVA table and the 

interpretation of coefficient results, the analysis yielded the following regression 

SM (Y) = 537.86 + 17.00 * TDD + 10.70 * REFR + .29 * CI 

The CI is not a statistically viable predictor in this model.   

Summary of Findings 

The research results indicate that TDD and REFR variables that characterized 

ASDM, with the exception of the CI variable, are significant predictors of software 

ty, changeability, stability, testability, and resultant maintainability for the 

software developed using Agile development approach.  The model explains 82.8% of 

the variability in software maintainability from the independent variables regressed.  

was not a statistically significant predictor of software 

maintainability in the generated regression model.   

In conclusion, TDD and REFR practices do play a significant role in the way 

software maintainability and constituting characteristics gets inbuilt during the Agile 

software development process.  Note that software maintainability is the internal quality 

 186

integration and software maintainability was therefore rejected.  At the same time, the 

be accepted 

when tested at a lower confidence level.  The direction of the sign in the test of 

hypotheses 15 was positive, meaning that when CI increases, software maintainability 

o meaningful 

Lastly, employing the results from ANOVA table and the 

interpretation of coefficient results, the analysis yielded the following regression 

The research results indicate that TDD and REFR variables that characterized 

ASDM, with the exception of the CI variable, are significant predictors of software 

ty, changeability, stability, testability, and resultant maintainability for the 

software developed using Agile development approach.  The model explains 82.8% of 

the variability in software maintainability from the independent variables regressed.  

was not a statistically significant predictor of software 

In conclusion, TDD and REFR practices do play a significant role in the way 

ristics gets inbuilt during the Agile 

software development process.  Note that software maintainability is the internal quality 



www.manaraa.com

 

 

187

attribute of the software that has potential compounding effect on external software 

quality characteristics.  Shaping the maintainability of the software product during the 

Agile development iteration process itself may now be possible with given findings of 

this study.  The results of the best regression model indicated a TDD elasticity of 17.05 

and REFR elasticity of 10.68, meaning that a 1% change in TDD within the Agile 

development approach will result in an approximate 17.05% change in software 

maintainability and that a 1% change in REFR efforts within the Agile development 

approach will result in an approximate 10.68% change in software maintainability.   

Following the presentation of the results in this chapter, and the statistical 

significance of the results, summary of the study is provided in Chapter 5.  This summary 

discusses the relations of the tested hypotheses and results of the study with its 

implication to IT management, Agile project management, and application maintenance 

management.  It also recommends further study avenues. 

 

  



www.manaraa.com

 

 

188

Chapter 5: Summary, Conclusions, and Recommendations 

Overview of the Study 

This quantitative study was conducted in an attempt to understand and determine 

the impact of ASDM on software maintainability, which constitutes software 

analyzability, changeability, stability, and testability.  Incorporating the software 

evolution framework in this study was an extension of prior studies that leveraged 

external quality attributes of software.  This study, on the contrary, leveraged internal 

software quality notion and maintainability specific sub-characteristics to understand 

whether the Agile software development model impacts the critical software quality 

attribute: software maintainability.  Integrating software maintainability objectives within 

the software development approach allows the IT management to attain healthy software 

life cycle as lower software maintainability often plagues the organizational profitability 

and productivity.  Agile software development model thus holds the potential to address 

this ongoing challenge of higher maintenance cost for IT organizations.    

Higher maintainability for software is a desired quality attribute.  However, there 

was minimum empirical evidence on the extent of influence of ASDM on software 

maintainability and its subcharacteristics, and this gap led to this study.  The reason this 

study was pursued was that growing software maintenance costs continue to paralyze the 

efficacy of IT as well as core business organizations.  Furthermore, Agile and non-Agile 

practitioners within IT management lacked understanding about the impact of Agile 

approach on maintainability hindering their abilities to leverage Agile to actually 



www.manaraa.com

 

 

189

influence the software maintainability and underlying attributes namely, software 

analyzability, changeability, stability, and testability.  Prior to the emergence of Agile as 

a software development model, many researchers (Banker, 1993; Bennett & Rajlich, 

2000; Takang & Grubb, 1996) had raised concerns related to software maintenance cost 

that continued to increase because of poor maintainability inherent within the software.  

With Agile model’s proliferation into software engineering and the practitioner’s world 

of development, businesses continue to leverage this approach for multifold reasons.  The 

underlying Agile practices such as test-driven development, refactoring, pair 

programming and iterative and continuous delivery of working software, offer numerous 

benefits known to the core business organizations.  The impact of these practices on the 

internal quality attributes such as maintainability, however, was largely unknown. 

The study was needed because there has been little research conducted on 

software maintainability within the context of ASDM-driven software life cycle.  Partly 

this is due to a paucity of real life-Agile software data.  This little research has been 

relatively recent (Sindhagatta, 2010) and it has limited focus primarily on the validation 

of Lehman’s laws of software evolution.  Another study, conducted by Bhadauria (2009) 

within an academic setting, focused on understanding the impact of test driven 

development on software quality, learning, and task satisfaction.  Bhat and Nagappan 

(2006) on the other hand, examined the impact of TDD in industry setting on software 

quality in terms of reduced defects and improved test coverage.  Additionally, research to 

understand software maintainability from the non-software development life cycle 



www.manaraa.com

 

 

190

(SDLC) perspective has been conducted by Moser et al. (2007) and Chen and Huang 

(2009).  These researchers used postdevelopment metrics and employed external quality 

notion to understand software maintainability in relation to software development by 

estimating the effect of development efforts.  Coram and Bohner (2005) studied the 

impact of Agile development model on software project management itself, which 

potentially may improve the success of the software development project.  Software 

maintainability was not part of their impact assessment. 

The effect of refactoring on software quality was also studied by several 

researchers (Alshayeb, 2009; Du Bois, Demeyer, Verelst, Mens, & Temmerman, 2006) 

showing its positive influence on software quality characteristics including 

maintainability, reusability, and testability.   Geppert, Mockus, and Rossler (2005) also 

studied the effect of refactoring on changeability and reported that the changeability 

efforts and defect rate were reduced.  This study built upon such prior Agile factor-

specific research by incorporating the theoretical frameworks of Lehman’s software 

evolution and maintenance laws.  The aim was to understand whether Agile software 

development approach characterized by its key attributes such as TDD, refactoring, and 

CI influenced software maintainability characteristics to enhance internal quality of 

software.  This approach is a departure from previous Agile and maintainability literature 

that has primarily focused on the relationship between Agile factors on software defects 

in the post deployment phase, impact assessment within non-Agile software development 

projects, and even open source software development environment.   



www.manaraa.com

 

 

191

Research Conclusions 

To achieve the goals of this study, the following research questions were 

statistically examined and answered.  What is the statistically significant impact of Agile 

software development approach or model and software maintainability characteristics?  

1. How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and 

Continuous Integration (CI), impact software analyzability (SA)? 

2. How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and 

Continuous Integration (CI), impact software changeability (SM)? 

3. How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and 

Continuous Integration (CI), impact software stability (SS)? 

4. How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and 

Continuous Integration (CI), impact software testabiliy (ST)? 

Lastly, the following research question is also answered through the examination 

of impact on resultant maintainability characteristic that is a function of SA, SC, SS, and 

ST. 

5. How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and 



www.manaraa.com

 

 

192

Continuous Integration (CI), impact resultant weighted software maintainability 

(SM)? 

The study provided a quantitative analysis attempting to measure the impact of 

the Agile development approach on the software analyzability, changeability, stability, 

and testability to achieve a higher software maintainability.  Based on the results in this 

study, it is clear that the Agile development model is significantly related to software 

maintainability changes and hence it bears the potential to influence this key software 

quality attribute within the development phase itself.  When the software revisions were 

analyzed for the changes in the source code properties such as complexity, coupling, 

duplication, unit size, and unit test efforts; the results has shown that software 

analyzability, changeability, stability, testability, and hence software maintainability were 

influenced positively by test driven development and refactoring techniques.  The 

continuous integration variable was found to be insignificant predictor of software 

maintainability and all its subcharacteristics.   

The results in this study do confirm the findings by Janzen and Saiedian (2005) 

and Bhat and Nagappan (2006), who examined TDD variable in specific.  Alshayeb 

(2009) and Du Bois et al. (2006) found that refactoring improved the maintainability 

including changeability within Agile development project.  There was no study 

conducted previously to assess the influence of continuous integration practice on 

software maintainability.  This practice, however, is primarily followed to improve the 

software integrity and assist the Agile developers to test the build on continuous basis 



www.manaraa.com

 

 

193

before rolling out to the production system.  The study findings suggested that this 

practice does not influence the maintainability or any of the underlying characteristics.  

The higher the test driven development, and refactoring efforts undertaken to reduce the 

complexity for high-risk category of the software classes, the more likely the software 

would increase its maintainability.  These results are also in line with Sindhgatta et al. 

(2010), who posited that iterative software development nature in Agile-driven 

development projects allows the development team to influence the complexity of the 

software and thus improve the maintainability.  However, this study contrasts to the 

concerns from the panel of Majko-Mattson et al. (2006), who asserted that Agile 

development approach could potentially jeopardize the software quality.  The results 

conform to underlying objectives of Agile approach suggested by Cockburn (2002), that 

Agile-driven development sought to improve the software quality besides attaining higher 

business value for the IT organizations through early delivery of the software.  Finally, 

the results also align with the findings of Giblin, Brennan, and Exton (2010) that Agile 

methods guide the developers to produce the software code with better maintainability 

characteristics.    

Answering the Research Questions 

The analysis and results presented in Chapter 4 provided sufficient statistical 

evidence to answer the research questions as follows: 



www.manaraa.com

 

 

194

Question 1 

 How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software analyzability (SA)? 

The regression model (Table 18) illustrated a strong statistical relationship 

between TDD and REFR, and SA.  The results showed that the alternative hypothesis 

should be accepted because of the statistical significance of SA in relation to TDD and 

REFR.  This means that a positive increase in TDD and REFR translates into higher 

software analyzability.  However, the CI did not influence SA.  This Agile practice is 

mainly used to allow the developers to improve the code integration during the earlier 

stage of the development.  The SA is the capability of the software system to allow the 

modifications, and it signifies the ease with which the analysis can be done before 

making the software modifications.  TDD enforces the programmers to write and test the 

unit tests as the actual code gets developed.  This practice makes the software code 

manageable and easier to analyze before applying the identified software modifications.  

Similarly, the REFR efforts reduce the overall code complexity, further improving 

software analyzability.  It is noteworthy that refactoring explained .30% of the changes 

compared to TDD, which explained .19% of the changes in analyzability, which is in 

harmony with the theoretical premise of refactoring objectives within the Agile 

development approach.  CI practice has no statistically significant relationship with SA.   



www.manaraa.com

 

 

195

This research question tests the assertion of increasing software complexity when 

software evolves unless efforts are undertaken to reduce its complexity.  Agile factors 

such as REFR allow the developers to reduce the code complexity without affecting its 

functionality, and in turn improve the analyzability throughout Agile iterations.  In 

congruence with this assertion, the results support the theory that the software system 

could become less complex when development teams work on it as it evolves.  The 

results illustrated that SA is positively related to TDD and REFR, whereas CI attribute of 

the ASDM does not influence analyzability.   

Question 2 

 How does the Agile software development model (ASDM),which is characterized 

by Test driven development (TDD), Refactoring (REFR), and Continuous Integration 

(CI), impact software changeability (SC)? 

The regression model (Table 20) illustrated a strong statistical relationship 

between TDD and REFR and software changeability.  The results showed that the 

alternative hypothesis should be accepted because of the statistical significance of SC in 

relation to TDD and REFR.  This means that a positive increase in TDD and REFR 

translates into higher SC.  However, the CI did not influence SC.  This Agile practice is 

mainly used to allow the developers to improve the code integration during the earlier 

stage of the development.  The SC is the capability of the software system to implement 

the modifications, and it signifies the ease with which the change implementation can be 

done.  TDD enforces the programmers to write and test the unit tests as the actual code 



www.manaraa.com

 

 

196

gets developed.  This practice further improves the software ability to change when 

implementing the identified software changes.  Similarly, the REFR efforts reduce the 

code complexity, in turn improving SC.  It is noteworthy that TDD explained .40% 

changes compared to REFR, which explained .25% change in changeability, which is in 

alignment with the objectives of TDD practice within the Agile development approach.  

TDD improves the capability of the software system to implement the change through 

writing the test in conjunction with code development efforts.  CI practice has no 

statistically significant relationship with SC.   

This research question tests the assertion of increasing software complexity when 

software evolves unless efforts are undertaken to reduce its complexity.  Agile factors 

such as REFR allow the developers to reduce the code complexity without affecting its 

functionality, and in turn improve the analyzability throughout Agile iterations.  In 

congruence with this assertion, the results support the theory that the software system 

could become less complex when development teams work on it as it evolved.  The 

results illustrate SC is positively related to TDD and REFR, whereas the CI attribute of 

ASDM does not influence changeability.   

 To conclude answering Question 2, ASDM that is characterized by TDD and 

REFR is positively related with SC with an exception of CI.  This means that the more 

TDD and REFR practices are adhered within Agile development approach, the higher the 

propensity to improve the SC.   

 



www.manaraa.com

 

 

197

Question 3 

How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software stability (SS)? 

The regression model does highlight a statistically significant relationship 

between Agile development approach and software stability.  This model was regressed 

for the entire data set of 61 software iterations.   

The regression model shown in Table 22 illustrated a strong statistical 

relationship between TDD and REFR and SS.  The results showed that the alternative 

hypothesis should be accepted because of the statistical significance of SS in relation to 

TDD and REFR.  This means that a positive increase in TDD and REFR translates into 

higher SS.  However, the CI did not influence SS as indicated earlier.  This Agile practice 

is mainly used to allow the developers to improve the code integration during the earlier 

stage of the development.  The SS is the capability of the software system to avoid 

unexpected effects from modifications of the software.  It also denotes the ease with 

which the software can be maintained in stable and consistent stage after the change 

implementation.  TDD practice enforces the programmers to write and test the unit tests 

as the actual code is developed.  This practice further improves the software ability to 

stabilize after implementing the identified software changes through test-ahead of coding 

protocol.  Similarly, the REFR efforts reduce the code complexity, in turn improving SS.  

Less complex classes are easy to change, and hence inform better stability after the 



www.manaraa.com

 

 

198

change is implemented.  It is noteworthy that TDD explained .42% of the changes 

compared to REFR, which explained .19% change in stability, which is in alignment with 

the objectives of TDD practice within the Agile development approach.  TDD improves 

the capability of the software system to stabilize the state of the software after the change 

implementation because the accomplished change get tested well through writing the test 

in conjunction with code development efforts.  Any failed test would indicate possible 

issues early and would stop programmers from implementing the change itself.  Lastly, 

CI practice has no statistically significant relationship with SC.  However, this Agile 

practice is actively adhered during the build testing efforts that occur prior to deployment 

to nondevelopment environment.  The insignificance of CI within this regression model 

does not alter or undermine its relevance in actual Agile development projects. 

To conclude answering Question 3, ASDM that is characterized by TDD and 

REFR is positively related with SS with an exception of the CI variable.  This means that 

the more TDD and REFR practices are adhered within Agile development approach, the 

higher is the capability of the software to stabilize and maintain the consistent state after 

the change implementation.  This capability or SS is influenced by ASDM positively. 

Question 4 

How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact software testabiliy (ST)? 



www.manaraa.com

 

 

199

When the ST was regressed for the ASDM variables, the regression model (Table 

24) showed a strong statistical relationship between a TDD as well as REFR variables 

and ST.  The TDD practice has a positive relationship with testability or the capability of 

the software to validate the implemented change.  This means that when developers write 

a test class to test the actual code written in given software class, it becomes easy for the 

developers to validate the change that eventually are implemented.  The TDD influenced 

.54% of variation in testability, whereas REFR accounted for .16% of variation.  More 

efforts spent on refactoring related to reducing the complexity of the classes that are 

higher than 20 McCabe CC, also influenced the testability positively.  The overall 

strength of this regression model was strong, with 83% indicating higher coefficient of 

determination. 

Question 5 

 How does the Agile software development model (ASDM), which is 

characterized by Test driven development (TDD), Refactoring (REFR), and Continuous 

Integration (CI), impact resultant software maintainability (SM)? 

Lastly, resultant SM was computed by adding weighted dependent variables 

(analyzability, changeability, stability, and testability) and its final value was regressed 

for TDD, REFR, and CI over 61 Agile iterations or revisions.  The regression model 

(Table 27) indicated that SM was influenced positively by all three variables.  The CI 

variable, however, was statistically insignificant in explaining the variation on SM due to 

higher p value of .819.  The TDD explained 17% of variation, whereas the REFR 



www.manaraa.com

 

 

200

explained 11% of variation in SM with 82.8% as coefficient of determination or strong 

strength of regression model.  An ASDM that is characterized by TDD and REFR does 

impact the resultant SM positively.  The CI variable was found to be statistically 

insignificant predictor of SM indicating that observed variation in maintainability cannot 

be attributed to variation in CI. 

Implications 

The summarized results have shown that ASDM is statistically significant 

predictor of SM.  True to form of a quantitative study, the U.S.-based IT organization’s 

data was used to evaluate how ASDM influences software complexity, coupling, 

duplication, and testing efforts, which in turn influence maintainability characteristics, 

employing a multiple regression technique.  The results obtained from the multiple 

regression models were mixed.  For the selected software system that was developed 

using the Agile approach, TDD and REFR were statistically significant contributors or 

predictor variables; however, CI was found to be an insignificant variable.  The finding 

are in congruence with the arguments by Beck (2003), Highsmith (2004), and Fowler 

(1999) that TDD and REFR practices allow the developers to write less complex, loosely 

coupled code that is testable and stable.  The Agile model also promotes a simple design 

technique that is also evident in the smaller method creation during the development.  

Based on the findings from this study, there are various implications to IT management, 

Agile driven software development project managers, Agile practitioners, and software 

support and maintenance organizations.    



www.manaraa.com

 

 

201

 

Implications to IT and Business Management 

The first implication from this study is the assessment of the impact of Agile 

approach and its specific three variables on key software quality attribute: SM.  Without 

this much-needed assessment, IT management may not confidently advocate Agile to the 

business organizations they serve.  Additionally, without knowing how the Agile 

approach can control and influence key maintainability attributes during the software 

development process, IT management may fail to fully leverage the Agile model to 

actually control and reduce the software maintenance efforts within their relevant 

business domains.  As articulated in the Need for the Study in Chapter 1, the recent 

growth in Agile adoption has been purely fueled by its highlighted benefits to the 

organizations in swift change management and adoption with changing business 

processes.  IT and business organizations, however, may incur systemic maintenance 

costs due to inadequate knowledge and poor understanding about Agile’s implications on 

maintainability-related attributes.   This study provides a quantitative and lightweight 

assessment model that can be incorporated into Agile-driven projects to improve the 

alignment between Agile practices and maintainability objectives.  This is major 

implication to IT management as this study indicated that ASDM is a statistically 

significant predictor of software maintainability during the Agile-driven iterations of 

development. 



www.manaraa.com

 

 

202

The results in Chapter 4 also revealed that TDD and REFR practices are good 

predictors of SM and its all subcharacteristics: analyzability, changeability, stability, and 

testability.  Knowing how TDD and REFR impacts various software internal quality 

attribute levels can help IT management, including Agile project management, improve 

the quality profile of application management portfolios by identifying software 

applications that could potentially be improved over time for their maintainability.  

 Understanding these specific software applications could also potentially result in 

quality-loss mitigating actions such as focused Agile development projects geared 

towards the improvement of business critical application plagued with poor 

maintainability.  These could serve as potential remedial actions against high 

maintenance efforts buildup and economic strife due to high maintenance cost.  In 

summary, the ability to better identify software maintainability characteristics that are 

highly sensitive to Agile factors could potentially result in mitigation of the software 

quality related risks. 

Implications to Agile Project Management 

The second implication of this study pertains to the Agile software development 

project management.  The Agile PM leadership and project sponsor organizations will 

better understand how Agile factors influence the internal software quality characteristic 

during the development iteration cycles.  In 2009, the Standish group reported that 

software development projects often struggled on achieving the required software quality, 

impairing the overall efficacy of IT organizations that often need to maintain the software 



www.manaraa.com

 

 

203

for many years.  When attempting to deliver the development project on time and within 

budget, PM leadership may not always succeed to produce the acceptable quality of the 

software.  More specifically, within Agile development projects, Chow and Cao (2008) 

identified three key success factors, one of which is Agile software engineering practices 

besides delivery strategy and team capability.  This study strengthens the need of 

integrating maintainability goals within Agile development and reiterate the significance 

of key Agile practices within the context of maintainability.  Software functionalities 

continue to grow rapidly within today’s business landscape, further demanding higher 

reliability and availability of the software.  An Agile development model can play a 

crucial role in ensuring that organizations achieve these higher quality norms with well-

informed Agile project management leadership.   

Understanding the impact of Agile factors could result in incorporating realistic 

software maintainability goals into software development projects to explicitly target 

long-term software quality influencing metrics and their proactive measurement.  Project 

management leadership may actively work on the quantifiable maintainability assessment 

throughout the Agile development iterations in favor of the customers as well as IT 

organization itself.    

Implications to Software Maintenance Management 

The third implication of this study is the affirmative effect on software 

maintenance management including IT organizations that are responsible to sustain the 

post-development software life cycle.  Software engineering practitioners and researchers 



www.manaraa.com

 

 

204

have largely argued that lack of maintainability considerations within software design 

(Kyte, 2011; Pigoski, 1997) often increases software maintenance cost.  Agile proponents 

attested to its expeditious system delivery (Paulk, 2001), but some researchers argued that 

this process-light approach could potentially postpone the system problem by breaching 

good software development principles (Khan, 2003).  The findings in this study revealed 

the positive correlation between Agile software development approach and software 

maintainability, strengthening the case for Agile-driven development approach to 

proactively reduce the futuristic maintenance cost.  In specific, this study has shown that 

TDD and REFR practices contribute to improved maintainability of the software.  This 

inference further suggests the possibilities of bridging the well-known gaps between 

development and maintenance organizations.  Lastly, precious IT resources may be 

reallocated to software development efforts as well as higher business value yielding 

initiatives rather than maintenance tasks due to improved software maintainability.    

Limitations of the Study 

When conducting this study, some limitations were encountered, particularly in 

regard to the availability of viable software systems that were developed using Agile 

approach.  This study was conducted on a single software system developed using the 

Agile model within a single IT organization.  Secondly, as detailed in the data 

manipulation section of Chapter 4, the software system data was missing partial values 

for one of the metrics: test coverage, related to unit test efforts.  Missing data was 

replaced with the data values computed using expectation maximization (EM) technique.  



www.manaraa.com

 

 

205

The final data analyzed was statistically significant, at 61 software revisions.  Perhaps 

having a larger sample would produce different results. The study analyzed the software 

classes and not the database related attributes. Lastly, the data came from 2010-2011 

periods for a specific project.  The results obtained in this quasi-experimental quantitative 

study may likely be different from other IT organizations with varied levels of Agile 

competency and maturity.   

Significance of the Study and Implications for Social Change 

On a larger scale, this study is significant because it has the potential to aid IT 

application management to better understand quality traits of their application portfolios 

by closely analyzing the impact of Agile development model on software maintainability 

characteristics.  As part of the new business process integration and new software 

development initiatives; IT software program management and business managers 

routinely examine application portfolios.  These reassessments attempt to scientifically 

quantify the potential impact of unhealthy software applications on the IT organizational 

overhead and the organization’s returns.  To support the claims of risk mitigation, this 

study used empirical evidence (presented in Chapter 4) to demonstrate that the Agile 

development model is a significant predictor of software maintainability. The study has 

also demonstrated how ASDM influences various subsets of the software maintainability.  

Such knowledge has the potential to help IT management and Agile teams to better 

develop their software while maximizing end-to-end business value.   



www.manaraa.com

 

 

206

The results detailed in Chapter 4 may provide Agile advocacy groups with a 

scientifically backed analysis for software projects to influence software maintainability 

characteristics, specifically for complex projects.  The ability to tune Agile factors within 

the Agile projects has the potential of substantially lowering software maintenance 

efforts, which could eventually mitigate the transfer of systemic risk into the software life 

cycle and lead to a stable and reliable software applications supporting the business 

economy.   

Finally, based on the existence of a statistical relationship between the Agile 

development approach and software maintainability within IT organization in the United 

States, I assert that integrating software maintainability-related objectives within Agile 

development projects will further bolster Agile adoption as well as improve the business 

value of IT organization.  Agile development teams should sharpen the focus on the 

underlying key Agile practices that influences the internal quality characteristics of the 

software.  Additionally, with proactive measurement of software maintainability 

throughout the development iterations, Agile project management is now positioned to 

steer the development team well ahead of costly maintenance efforts.  Lastly, IT 

operation and application maintenance teams can embrace Agile more confidently within 

their organizations to mitigate the software quality concerns within maintainability 

realms.  The application of these findings will potentially lead to healthy software 

application life cycles, resulting into more reliable software product and efficient 

business organizations.   



www.manaraa.com

 

 

207

Recommendations for Future Study 

Several recommendations for future research emerge from this study.  First, the 

data from the Agile-driven software project repository may further be merged with 

postdevelopment maintenance efforts, maintenance incident, and productivity-gain 

related data.  This is to determine whether ASDM can in turn improve the ability of IT 

management to enhance the application life cycle health, improve business value through 

higher maintainability, and efficient resource allocation within software development 

organizations.  The process of continuous proactive assessment could be revolutionary as 

it has the potential to identify specific Agile factor and tune it precisely within active 

iteration or cycle for better maintainability goals.  Agile teams could potentially optimize 

Agile-specific practices in order to improve software maintainability. 

The TDD explained 17% of the variation in software maintainability within the 

sampled Agile project.  REFR explained 10.68% of the variation, whereas CI was not 

found to be a significant variable and did not explain statistically significant variation in 

any of the maintainability sub-characteristics.  Future studies could incorporate the effect 

of pair programming practice into the model to determine whether it is a significant 

driver of software maintainability and any of its subcharacteristics. Additional studies 

may examine the indirect influence of CI practice or attribute on software maintainability 

using other acceptable measure than the count of successful builds  as a measure of CI.   

Using varied data from several project teams rather than single software project-

specific data could also provide more insight into whether maintainability has been 



www.manaraa.com

 

 

208

changing among software applications, whose development project teams and leadership 

vary.  One other avenue of future research is to conduct studies in other IT organizations 

within the United States and outside of the United States. In summary, this study paved 

the way for additional research that may incorporate the tenets of software 

maintainability to be conducted in additional agile business domains, additional software 

development projects, and maintenance organizational setting integrating ASDM.  This 

study also provided a foundation for analyses of other project success factors within 

Agile driven development; factors such as customer satisfaction based on the software 

maintenance quality, reduction in the software maintenance cost, lower software 

maintainability, and software maintenance team’s performance.    

Study Conclusion 

 This study provides statistically significant findings that TDD and REFR practices 

within the Agile model of software development influence software maintainability and 

its sub-characteristics positively.  TDD specifically influenced the software testability the 

most compared to other attributes of maintainability. REFR on the other hand influenced 

analyzability the most compared to all other attributes of maintainability. These 

conclusions are well in alignment with core Agile practice intentions. For instance, TDD 

is targeted to improve the ease of the software to be tested after the modification is done. 

REFR is followed to simplify the design and reduce the code complexity that in turn 

yield the improvement in the east with which software can be analyzed before the change 

is made. Furthermore, it also raises some interesting questions.  For instance, why does 



www.manaraa.com

 

 

209

TDD within Agile development improve the analyzability or the ease with which 

programmers can understand the specific part or module that needs to be changed? The 

answer is difficult to determine using the data used in this study.  However, it may be 

inferred that the TDD approach allows the development team to focus on testing efforts 

through unit test creation and its successful execution, that also in turn allow them to 

improve their ability to identify the specific section or sections of the program.  This ease 

in the identification of specific module or component of the program improves the 

software analyzability.  Additionally, the REFR efforts may even be resulting from the 

failed testing that needed some additional REFR efforts to reduce the complexity.  The 

reduced complexity then further improves the software analyzability as well.  CI practice 

is critical at the code creation & integration stage to avoid possible rework. It also builds 

the developer’s confidence incrementally. With given data, the findings didn’t establish 

its direct influence on maintainability. The results of this study strengthens the 

confidence of IT management in Agile practices further as they continue to address the 

challenges of increasing software maintenance efforts and cost.  The biggest social 

impact of this study is its ability to provide IT management with an additional assertion 

that could be used to improve the alignment between software maintainability objectives 

and Agile practices.  This improved alignment could further solidify business value of 

Agile approach through qualitative, productive, and cost-effective IT services.  Potential 

reduction in software maintenance efforts and cost is a big win for organizations, 

resulting from a higher quality of software that is developed using the Agile approach.   



www.manaraa.com

 

 

210

 
References 

Aczel, A. D. (2006). Complete business statistics (6th ed.). New York, NY: McGraw-Hill. 

Agile Alliance. (2005). Manifesto for Agile software development. Retrieved from  

http://www.agilealliance.org 

Ahern, K. & Brocque, R. (2005). Methodological issues in the effects of attrition. Sage 

Journal of Field Methods, 17(1), 53-69. doi: 10.1177/1525822X04271006 

Ahmed, R. N. (2006). Software maintenance outsourcing: Issues and strategies. 

Computers & Electrical Engineering, 32(6), 449-453. Retrieved from 

http://dx.doi.org/10.1016/j.compeleceng.2006.01.023  

Alkhatib, G. (1992). The maintenance problem of application software. An empirical 

analysis. Journal of software maintenance–Research and Practice, 4(2), 83-104. 

doi: 10.1002/smr.4360040203  

Alshayeb, M., & Li, W. An empirical validation of object-oriented metrics in two 

different iterative software processes. IEEE Transactions on Software 

Engineering, 29(11), 1043-1049. doi: 10.1109/TSE.2003.1245305 

Apfelbaum, L., & Doyle, J. (1997). Model based testing. Proceedings of 10th 

International Software Quality Week Conference. San Francisco, CA: Software 

research institute. 

Arnold, R. S. & Parker, D. A. (1982). The dimensions of healthy maintenance. 

Proceedings of the 6th International Software Engineering Conference,10-27. 

IEEE Computer Society Press. Los Alamitos, CA. 



www.manaraa.com

 

 

211

Arthur, L. J. (1988). Software evolution: The software maintenance challenge. New 

York, NY: John Wiley and Sons. 

Augustine, S. (2005). Managing Agile projects (1st ed.). Lebanon, IN: Prentice Hall 

Publication. 

Bagheri, E., & Gasevic, E. (2011). Assessing the maintainability of software product line  

feature models using structural metrics. Software Quality Journal, 19(30), 579-

612 doi: 10.1007/s11219-0109127-2 

Balci, O. (2003). Verification, validation and certification of modeling and simulation 

applications. Proceedings of the 2003 Simulation Conference, 1, 150-158. doi: 

10.1109/WSC.2003.1261418  

Banker, R. D., Datar, S. M., & Kemerer, C. F. (1991). A model to evaluate variables 

impacting the productivity of software maintenance projects. Management 

Science, 37(1), l-18. doi: 10.1287/mnsc.37.1.1 

Banker, R. D., Datar, S. M., Kemerer, C. F., & Zweig, D. (1993). Software complexity & 

software maintenance costs. Communications of the ACM, 36(11), 81-94. doi: 

10.1145/163359.163375  

Banker, R. D., Davis, G. B., & Slaughter, S. A. (1998). Software development practices, 

software complexity, and software maintenance performance: A field study. 

Management Science, 44(4), 433-450. doi: 10.1287/mnsc.44.4.433 

 

 



www.manaraa.com

 

 

212

Basili, V. R., & Perricone, B. (1984). Software errors and complexity: An empirical 

investigation. Communications of the ACM, 27(l), 42-52. doi: 

10.1145/69605.2085 

Beck, K. (1999a). Embracing change with extreme programming. IEEE Computer 

 Journal, 32(10), 70–77. doi: 10.1109/2.796139 

Beck, K. (2000). Extreme programming explained: Embrace change. San Francisco, CA: 

Addison-Wesley.  

Beck, K., & Andres, C. (2005). Extreme programming explained. (2nded.). Boston, MA: 

Addison Wesley. 

Berry, W. D., & Feldman, S. (1985).  Multiple regression in practice.  Sage University 

Paper Series on Quantitative Applications in the Social Sciences, 7(50), 16-20. 

Newbury Park, CA: Sage  

Beck, K. (1999). Extreme programming explained. Embrace change. Reading, MA: 

Addison-Wesley. 

Bendifallah, S., & Scacchi, W. (1987). Understanding software maintenance work. IEEE 

Transactions on Software Engineering, 13(3), 311-323.  

doi: 10.1109/TSE.1987.233162  

Bennet, K. H. (1990). An introduction to software maintenance. Information and 

 Software Technology, 12(4), 257-264. Retrieved from sciencedirect - Elsevier  

 

 



www.manaraa.com

 

 

213

Bendifallah, S., & Scacchi, W. (1987). Understanding software maintenance work. IEEE 

Transactions on software engineering, 13(3), 311-323. 

doi:10.1109/TSE.1987.233162  

Bellini, E., Canfora, G., Garcia, F., Piattini, M., &Visaggio1, C.A. (2005). Pair designing 

as practice for enforcing and diffusing designs knowledge. Journal of Software 

Maintenance and Evolution: Research and Practice, 17, 401-423. doi: 

10.1002/smr.322. 

Bhatt, P., & Shroff, G.(2004). Dynamics of software maintenance. ACM SigSoft Software 

Engineering Notes, 29(5), 1-5. doi: 10.1145/1022494.1022513 

Bhatt, P., Shroff, G., Anantaram, C., & Misra, A. K. (2006). An influence model for 

factors in outsourced software maintenance. Journal of Software Maintenance 

and Evolution: Research and Practice, 18,385-423. doi: 10.1002/smr.v18:6 

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the  

perplexed. Boston, MA: Addison-Wesley. 

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G., & Merritt, M.  

(1978). Characteristics of software quality. North Holland: Elsevier Science. 

Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software 

quality. In the Proceedings of the 2nd International Conference on Software 

Engineering, 592-605. Retrieved from IEEE Computer Society Press. Los 

Alamitos, CA. 

Brooks, F. (1995). The mythical man-month. Reading, MA: Addison-Wesley. 



www.manaraa.com

 

 

214

Briand, L., Bunse, L., Daly, J.,  &Differding, C. (1997). An experimental comparison of 

the maintainability of object-oriented and structured design documents. Empirical 

Software Engineering. Retrieved from at: http://citeseer.nj.nec.com/12374.html. 

Broy, M., Deissenboeck, F., & Pizka, M. (2006). Demystifying maintainability. In the 

Proceedings of the International workshop on Software quality,  ACM, 21-26. doi: 

10.1145/1137702.1137708 

Burns, N., & Grove, Su.K.  (1993). The practice of nursing research: Conduct, critique 

& utilization (2nd ed.). Oxford: W.B. Saunders. 

Cao, L., Balasubramaniam, R., Tarek Abdel-Hamid (2010). Modeling dynamics in agile 

software development. ACM Transaction Management Information system, 1(1):5 

doi.10.1145/1877725.1877730  

Chapin, N. (1989). An entropy metric for software maintainability. Proceedings of the 

Twenty-Second Annual Hawaii International Conference on System Sciences, 

522-523. doi: 10.1109/HICSS.1989.48047 

Charette, R.(2004). The decision is in: Agile versus heavy methodologies. Agile 

Development and Project Management. Cutter Consortium, 2(19). Retrieved from 

www.cutter.com/freestuff/epmu0119.html. 

Changeau, D. (2004). Citizenship and constructing sense in voting: An experimental 

approach. Conference Papers–American Sociological Association, 1(1), 1-16. 

Chidamber, S. & C. Kemerer (publication date). A metrics suite for object-oriented 

design. IEEE Transactions on Software Engineering, 20(6), 476-493. 



www.manaraa.com

 

 

215

Chiang, I. R., & Mookerjee, V. S. (2004). Improving software team productivity. 

Communications of the ACM, 47(5), 89-93. doi.:10.1145/986213.986217 

Chen, J., & Huang, S. (2009). An empirical analysis of the impact of software 

development problem factors on software maintainability. The Journal of Systems 

and Software, 82, 981-992. doi: 10.1016/j.jss.2008.12.036 

Chidamber, S., Darcy, D. P., & Kemerer, C.F. (1998). Managerial use of metrics for 

object-oriented software: An exploratory analysis. IEEE Transactions on 

Software Engineering, 24(8), 629-639. doi: 10.1109/32.707698 

Chidamber, S. R., & Kemerer, C.F. (1994). A metrics suite for object oriented design. 

IEEE Transactions on Software Engineering, 20(6), 467-493. doi: 

10.1109/32.295895 

Chow, T., & Cao, D.(2008). A survey of critical success factors in agile software 

projects. Journal of Systems and Software, 81(6), 961-971. doi:  

10.1016/j.jss.2007.08.020 

Cockburn, A.(2006). Agile software development, the cooperative game. London: 

 Pearson Education. 

Cockburn, A. (2002). Agile software development. Boston, MA: Addison Wesley. 

Cockburn, A. & Highsmith, J. (2001). Agile software development, the people factor. 

IEEE Journals, 34(11), 131-133. doi: 10.1109/2.963450  

 

  



www.manaraa.com

 

 

216

Conboy, K.,& Fitzerald, B. (2010). Method and developer characteristics for effective 

agile method tailoring: A study of XP expert opinion, ACM Transactions on 

software engineering and methodology, 20(1),1-29. doi: 

10.1145/1767751.1767753 

Correia, J. P., Kanellopoulos, Y., &Visser, J. (2009). A survey-based study of the 

mapping of system properties to ISO/IEC 9126 maintainability characteristics. 

IEEE ICSM. doi: 10.1109/ICSM.2009.5306346 

Coram, M., & Bohner, S. (2005). The impact of Agile methods on software project 

management. Engineering of Computer Based Systems, 363-370. doi: 

10.1109/ECBS.2005.68 

Creswell, J. (2003). Research design. Qualitative, quantitative, and mixed methods 

approaches (2nd ed.). Thousand Oaks, CA: Sage publications. 

Creswell, J. (2007). Qualitative inquiry and research design: Choosing among five 

approaches. Thousand Oaks, CA: Sage Publications, Inc. 

Cugola, G., & Ghezzi, C. (1998). Software processes: A retrospective and a path to the  

future. Software Process Improvement and Practice, 4, 101-123. doi:  

doi: 10.1002/(SICI)1099-1670(199809)4:3<101::AID-SPIP103>3.0.CO;2-K 

Das, S., Lutters, W., & Seaman, C. (2007). Understanding documentation value in 

software maintenance. ACM. doi: 1-59593-635-6/07/0003 

 

 



www.manaraa.com

 

 

217

Dethomas, A. (1987). Technology requirements of integrated, critical digital flight  

systems. In: AIAA Guidance, Navigation and Control Conference, Monterey, CA,  

Technical Papers, (Vol. 2), 1579-1583. American Institute of Aeronautics and 

Astronautics, New York.  

Dekleva, S. (1992a). Delphi study of software maintenance problems. In: Proceedings 

of the 1992 Conference on Software Maintenance. IEEE Computer Society, 10- 

17. doi: 10.1109/ICSM.1992.242564   

Dekleva, S. M. (1992b). The influence of the information systems development approach 

on maintenance. MIS Quarterly, 16(3), 355-372. doi: 10.2307/249533 

Evans, M. W. & Marciniak, J. (1987). Software quality assurance and management. New 

York: Wiley. 

Fenton, N. E., & Ohlsoon, N. (2000). Quantitative analysis of faults and failures in a  

complex software system. IEEE Transactions on Software Engineering, 26(8),  

797-814. doi: 10.1109/32.879815 

Fowler, M. (2001). Reducing coupling. IEEE Software, 18(4), 102-104. doi:  

10.1109/MS.2001.936226 

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring: 

Improving the design of existing code. New Jersey: Addison-Wesley Professional. 

 

 



www.manaraa.com

 

 

218

Glass, R. L., &  Noiseux, R. A. (1981). Software maintenance guidebook. Englewood 

Cliffs, NJ: Prentice-Hall.George, B., & Williams, L. (2004). A structured 

experiment of test-driven development. Information and Software Technology, 

46, 337-342. doi: http://dx.doi.org/10.1016/j.infsof.2003.09.011 

Gilb, T. (1988). Principles of software engineering management. London: Addision 

Wesley. 

Giblin, M., Brennan, P., & Exton, C. (2010). Agile processes in software engineering and 

extreme programming. Lecture Notes in Business Information Processing, 48(1), 

58-72. doi: 10.1007/978-3-642-13054-0_5 

Gibson, V. and J. Senn. (1989). System Structure and Software Maintenance 

Performance. Communications of the ACM, 32(3), 347-358. doi: 

10.1145/62065.62073 

Gremiilion, L. L. (1984). Determinants of program repair maintenance requirements. 

Management of Computing–Communication of ACM, 27(8), 826-832. 

doi:10.1145/358198.358228 

Grubb, P., & Takang, A. A. (2003). Software maintenance: Concepts and practice (2nd 

ed). NJ: World scientific publication. 

Gyimothy, T., Ferenc, R. & Siket, I. Empirical validation of object-oriented metrics on 

open source software for fault prediction. IEEE Transactions on Software 

Engineering, 31(10), 897-910. 

 



www.manaraa.com

 

 

219

Hayes, J. H., Dekhtyar, A., Sundaram, S. K., Holbrook, E. A., Vadlamudi, S., & April, A. 

(2007). Requirements tracing on target (RETRO). Improving software  

maintenance through traceability recovery. Innovations in Systems and Software 

Engineering, 3(3), 193–202. doi: 10.1007/s11334-007-0024-1  

Hayes, J. F., Mohamed, N., & Gao, T. H. (2003). Observe-mine-adopt (MOA): An agile 

way to enhance software maintainability. Journal of Software Maintenance and 

Evolution Research and Practice, 15, 297-323. doi:10.1002/smr.287 

Helms, G. L. & Weiss, I. R. (1985). Application software maintenance: Can it be 

controlled? ACM Journal, 16(2), 16-18.doi: 10.1145/1040688.1040691 

Heitlager, I., Kuipers, T., &Visser, J.(2007). A practical model for measuring 

maintainability. Sixth International Conference on the Quality of Information and 

Communications Technology. doi: 10.1109/QUATIC.2007.8 

Highsmith, J. (2002). Agile software development ecosystems. Boston, MA: Addison-

Wesley Professional. 

Highsmith, J. (2009). Agile project management: Creating innovative products. (2nd ed.).  

Boston: Addison-Wesley. 

Holcombe, M., 2008. Running an Agile software development project. Hoboken, NJ: 

John Wiley & Sons, Inc.  

Hordijk, W., & Wieringa, R. (2005). Surveying the factors that influence maintainability.  

ACM Journal, 385-388. doi: 1595930140/05/0009 

 



www.manaraa.com

 

 

220

Hoffer, J. A., George, J. F., & Valacich, J. S. (2008). Modern systems analysis and 

design. (5th ed.). Upper Saddle River, NJ: Prentice Hall. 

Howcroft, D., & Trauth, E. (2008). Handbook of critical information systems research- 

theory and application. Cheltenham: Edward Elgar Publishing 

Huffman, J. E., & Burgess C. (1988). Partially automated in-line documentation (PAID): 

Design and implementation of a software maintenance tool. Proceedings 

Conference on Software Maintenance. Los Alamitos, CA: IEEE Computer 

Society Press, 60-65. doi: 10.1109/ICSM.1988.10140 

Huffman, H. J., & Offutt, A. J. (2000). Product and process: Key areas worthy of 

software maintainability empirical study. Sixth IEEE Workshop on Empirical 

Studies of Software Maintenance. Retrieved from 

http://members.aol.com/geshome/wess2000/janeHwess.pdf 

Hulse, C., Edgeron, S.,Ubnoske, M.,& Vazquez, L.(1999). Reducing maintenance costs  

through the application of modern software architecture principles. Proceedings 

of the annual ACM SIGAda International conference on Ada,19(3),101-110,doi: 

10.1145/319295.319311. 

Huo, M., Verner, J., Zhu, L., & Babar, M. A. (2004). Software quality and Agile 

methods. Proceedings of the annual International conference on Computer 

software and applications. IEEE,1, 520-525. doi: 

10.1109/CMPSAC.2004.1342889 

 



www.manaraa.com

 

 

221

IEEE. (2000). Authoritative dictionary of IEEE standards terms. New York: Author. 

IEEE Press. 

IEEE. (1990). IEEE standard computer dictionary. A compilation of IEEE standard 

computer glossaries. doi. 10.1109/IEEESTD.1991.106963 

ISO/IEC 9126-4 (2004). ISO/IEC 9126-4  Software Engineering – Product Quality 

International Standard Quality in Use Metrics. Geneva, Switzerland 

ITIL Application Management. (2002). ITIL application management. London, England: 

The Stationary Office. 

Janzen, D.S., & Saiedian, H. (2006).On the influence of test-driven development on 

software design. Proceedings of 19th Conference on Software Engineering 

Education and Training, 141-148. doi: 10.1109/CSEET.2006.25 

Jensen, R.N., Platz, N., & Tjornehoj,G. (2008). Developer stories: Improving architecture  

In agile practice. Proceedings of 2nd International conference on computer 

communication and information systems, 22(2), 172–184. doi: 10.1007/978-3-

540-88655-6_13 

Jung, H., Kim, S., & Chung, C. (2004). Measuring software product quality: A survey of  

ISO/IEC 9126. IEEE Software Journal, 21(5), 88-92.doi:  

10.1109/MS.2004.1331309. 

Kafura D., & Reddy, R. (1987). The use of software complexity metrics in software 

maintenance. IEEE Transactions on Software Engineering, 13(3), 335-343. doi: 

10.1109/TSE.1987.233164 



www.manaraa.com

 

 

222

Kaplan, S. (2002). Now is the time to pull the plug on your legacy apps. CIO Magazine. 

Retrieved from www.cio.com/archive/031502/infrastructure.html 

Kajko-Mattsson, M., Lewis, G., Siracusa, D., Chapin, N.,Nocks, J., Sneed, H. et al. 

(2006). Long-term life cycle impact of Agile methodologies. 22nd IEEE 

International Conference on Software Maintenance, 422-425.doi: 

10.1109/ICSM.2006.34 

Kan, S. H. (2003). Metric and models in software quality engineering. (2nd ed.). Boston, 

MA: Addison-Wesley Publication. 

Kanellopoulos, Y., Antonellis, P., Antoniou, D., Makris, C.,Theodoridis, E., Tjortjis, C., 

Tsirakis, N. (2010). Code quality evaluation methodology using the ISO/IEC 

9126 Standard. International Journal of Software Engineering & Applications 

(IJSEA), 1(3),17-36. doi: 10.5121/ijsea.2010.1302 

Kanellopoulos, Y., Heitlager, I., Tjortjis, C., & Visser, J. (2008). Interpretation of source 

code clusters in terms of the ISO/IEC-9126 maintainability characteristics. 

Software maintenance and reengineering IEEE Conference. 63-72. doi: 

10.1109/CSMR.2008.4493301 

Karlsson, J. B. R., & Wohlin, C. (1998). An evaluation of methods for prioritizing 

software requirements. Journal of Information and Software Technology, 39 (14-

15), 993-947. doi: http://dx.doi.org/10.1016/S0950-5849(97)00053-0 

 

 



www.manaraa.com

 

 

223

Kemerer, C. F., & Slaughter, S. (1999). An empirical approach to studying  

software evolution. IEEE Transactions on Software Engineering,  

25(4), 493-509. doi: 10.1109/32.799945 

Kemerer, C. F., & Slaughter, S. (1997). Determinants of software maintenance profiles: 

An empirical investigation. Journal of Software Maintenance, 9(4), 235-251. doi: 

10.1002/(SICI)1096-908X(199707/08)9:4<235::AID-SMR153>3.0.CO;2-3 

Kendall, K. E., Kong, S., & Kendall, J. (2010). The impact of agile methodologies on the 

quality of information systems: Factors shaping strategic adoption of agile 

practices. International Journal of Strategic Decision Sciences, 1(1), 41-56. doi: 

10.4018/jsds.2010103003 

Kelly, D. (2006). A study of design characteristics in evolving software using stability  

as a criterion. IEEE Transactions of Software Engineering, 32(5), 315-329. doi:  

10.1109/TSE.2006.42 

Khan, K. (2004). Managing corporate information systems evolution and maintenance. 

Sydney, Australia: IGI Global Press. 

Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). 

New York: The Guilford Press. 

Knipp, E., Driver, M., Norton, D., Pezzini, M., Murphy, J., Blechar, M. et al. (2010). Key 

issues for application development. Gartner research database. 

 



www.manaraa.com

 

 

224

Kozlov, D., Koskinen, J., Sakkinen, M., & Markkula, J. (2007). Assessing 

maintainability change over multiple software releases. Journal of Software 

Maintenance and Evolution: Research and Practice, 20, 31-58. doi: 

10.1002/smr.361 

Kyte, A. (2011). Estimating the future cost of application maintenance. Gartner Research 

Database. 

Kunstar, J., & Havlice, Z. (2008). Architecture for ease of software systems maintenance. 

Applied Machine Intelligence & Informatics.195-200. 

doi:10.1109/SAMI.2008.4469163 

Kunz, M., Dumke, R. R., & Zenker, N. (2008). Software metrics for Agile software 

development. IEEE Software Engineering Conference, 673-678. doi: 

10.1109/ASWEC.2008.4483261 

Larson, R., & Farber, B. (2006). Elementary statistics: Picturing the world (3rd ed.). 

Upper Saddle River, NJ: Pearson Education.  

Leedy, P. A., & Ormrod, J. E. (2001). Practical research: Planning and design (7th ed.). 

Columbus, OH: Merrill Prentice-Hall. 

Law, J., & Rothermel, G. (2003). Whole program path-based dynamic impact analysis. 

Proceedings of the 25th International Conference on Software Engineering, 308-

318. doi: 10.1109/ICSE.2003.1201210 

 



www.manaraa.com

 

 

225

Lee, K., & Lee, S. J. (2005). A quantitative software quality evaluation model for the 

artifacts of component based development. IEEE Conference in Software 

Engineering, AI Networking & Parallel/Distributed Computing, 20-25.doi: 

10.1109/SNPD-SAWN.2005.7 

Leffingwell, D. (2007). Scaling software agility–Best practices for large enterprises. 

MA: Addison-Wesley.  

Lientz, B. P. & Swanson, E. B. (1980). Software maintenance management. MA: 

Addision-Wesley.  

Lientz, B. P., & Swanson, E. B. (1978). Characteristics of application software 

maintenance. Communications of ACM, 21(6), 466-471. doi: 

10.1145/359511.359522 

Lientz, B. P., & Swanson, E. B. (1981). Problems in application software maintenance.  

Communications of ACM, 24(11), 763-769. doi:10.1145/358790.358796  

Layman, L. (2004). Empirical investigation of the impact of extreme programming  

practices on software projects. ACM Sigplan conference,328-329. 

doi.10.1145/1028664.1028787 

Lague, B., Proulx, D., Mayrand, J., Merlo, E. & Hudepoh, J. (1997). Assessing the 

benefits of incorporating function clone detection in a development process. 

Proceedings of the International Conference on Software Maintenance. 

 

 



www.manaraa.com

 

 

226

Lehman, M. M. (1996). Laws of software evolution revisited. Proceedings of the 5th 

European workshop on software process technology, 1149, 108-124.doi: 

10.1007/BFb0017737 

Lehman M. M. (1980). Programs, life cycles, and laws of software evolution. 

Proceedings of  IEEE, (68)9, 1060-1076. doi: 10.1109/PROC.1980.11805 

Lehman, M. M., & Belady, L. A. (1985). Program evolution. Process of software 

change. San Diego, CA: Academic Press. 

Lehman, M. M., Ramil, J. F., & Wernick, P. D. (1997). Metrics and laws of software 

evolution-The nineties view. Fourth International Software Metrics Symposium, 

20-32. doi: 10.1109/METRIC.1997.637156 

Lehman, M. M., Perry, D. E., & Ramil, J. E. (1998). On evidence supporting the FEAST 

hypothesis and the laws of software evolution.  Fifth International Software 

Metrics Symposium, 84-88. doi: 10.1109/METRIC.1998.731229 

Lehman, M. M., & Ramil, J. F. (.2001). Evolution in software and related areas, 

Proceedings of the 4th International Workshop on Principles of Software 

Evolution. ACM. doi:10.1145/602461.602463  

Lehman, M. M, Perry, E. E., & Ramil, J. F. C. (1998). Implications of evolution metrics 

on software maintenance. ICSM98, 208-217.doi.10.1109/ICSM.1998.738510 

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., & Turski, W. M. (1997). 

Metrics and laws of software evolution: The nineties view. IEEE Journal,20-32, 

doi: 10.1109/METRIC.1997.637156 



www.manaraa.com

 

 

227

Lindvall, M., Muthig, D., Dagnino, A.,Wallin ,C., Stupperich, M., Kiefer, … , J., 

Kahkonen,T. (2004). Agile software development in large organizations. IEEE 

Computer Journal, 37(12), 26-34. doi: 10.1109/MC.2004.231 

Loof de, L. A. (1997). Information systems outsourcing decision making. A managerial 

approach. Hershey, PA: IDEA Group Publishing. 

Lorenz, M., & Kidd, J. (1994). Object-oriented software metrics. NY: Prentice Hall. 

Maxwell, S. E., & Delaney, H. D. (2000). Designing experiments and analyzing data: A 

model comparison perspective. Mahwah, NJ. : Lawrence Erlbaum. 

Martin, J., & McClure, C. (1983). Software maintenance: The problem and its solutions.  

NY: Prentice-Hall. 

McBreen, P. (2003). Questioning extreme programming. New York: Addison-Wesley 

Professional. 

McClure, C. L. (1981). Managing software development and maintenance. New York: 

Van Nostrand Reinhold.  

McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in software quality.  

National Technical Information Service, 1, 2-3. AN: ADA049014 

McConell, S. (1996). Rapid development. Redmond, WA: Microsoft Press. 

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software 

Engineering, 2(4), 308-320. doi: 10.1109/TSE.1976.233837 

McCabe,T.J. & Watson, A. H.(1994). Software complexity. Crosstalk, Journal of 

Defense Software Engineering, 7(12), 5-9.  



www.manaraa.com

 

 

228

Mens, T., & Tourw´e, T. (2004). A survey of software refactoring. IEEE Transactions on 

Software Engineering, 30(2),126 -139. doi: 10.1109/TSE.2004.1265817 

Mens, T., & Demeyer, S. (2001). Future trends in software evolution metrics. 

Proceedings of the Fourth International Workshop on Principles of Software 

Evolution (IWPSE),83-86. doi: 10.1145/602461.602476 

Michura, J., & Capretz, M. A. M. (2005). Metrics suite for class complexity. In 

Proceedings of the International Conference on Information Technology: Coding 

and Computing, 2, 404-409. doi: 10.1109/ITCC.2005.193 

Mistra, S. C. (2007). Adopting software development practices: Success factors,  

changes required, and challenges. (Unpublished doctoral dissertation). Retrieved  

from ProQuest research database. 

Miranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE  

Software Journal, 18(1), 87-91. doi:10.1109/52.903173 

Mohr, L. B. (1995). Impact analysis for program evaluation. Newbury Park, CA: Sage  

Publications.   

Moser, R., Scotto, M., Sillitti, A., & Succi, G. (2007). Does XP deliver quality and 

maintainable code? Proceedings of the 8th international conference on Agile 

processes in software engineering and extreme programming. Springer-Verlag 

Publisher, 4536, 105-114. doi: 10.1007/978-3-540-73101-6_15 

McClure, C. L. (1981). Managing software development and maintenance. New York: 

Van Nostrand Reinhold.  



www.manaraa.com

 

 

229

Monkevich, O. (1999). SDL-based specification and testing strategy for communication  

network protocols. In: Proceedings of the 9th SDL Forum, Montreal, Canada. 

Mogyorodi, G., (2001). Requirements-based testing: An overview. In: 39th 

International Conference and Exhibition on Technology of Object-Oriented 

Languages and Systems (TOOLS39), 286-295, doi:  

10.1109/TOOLS.2001.941681 

Murphy, T. (2009). Mix in the right test skills and achieve quality. Gartner research 

Database. 

Murphy-Hill, E., Parnin, C., & Black, A. P. (2009). How we refactor, and how we know 

it. In ICSE ’09: Proceedings of the 2009 IEEE 31st International Conference on 

Software Engineering, 287-297. doi: 10.1109/ICSE.2009.5070529 

Nair, K. (2010). Design property metrics to maintainability estimation: A virtual method 

using functional relationship mapping. ACM Sigsoft Software Engineering, 35(8). 

doi.10.1145/1874391.1874404 

Nasution, M. F. F., & Weistroffer, H. R. (2009). Documentation in Systems 

Development: A Significant Criterion for Project Success,1-9. 

doi:10.1109/HICSS.2009.167 

Nakatani, T., Tamai, T., Tomoeda, A., & Matsuda, H. (1997). Towards constructing a 

class evolution model. Proceedings Asia-Pacific Software Engineering 

Conference and International Computer Science Conference,131-138. doi: 

10.1109/APSEC.1997.640170 



www.manaraa.com

 

 

230

Ohlsson, M. C., Andrews, A. A., & Wohlin, C. (2001). Modeling fault-proneness 

statistically over a sequence of releases: A case study. Journal of Software 

Maintenance and Evolution: Research and Practice, 13(3), 167-199. doi: 

10.1002/smr.229 

Orso, A., Apiwattanapong, T., & Harrold, M. J. (2003). Leveraging field data for impact  

analysis and regression testing. In ESEC/FSE-11: Proceedings of the 9th  

European Software Engineering Conference, 28(5), 128-137. doi:  

10.1145/949952.940089 

Oman, P. & Hagemeister, J. (1992). Metrics for assessing a software system's  

maintainability. IEEE Journal, 9, 337-334. doi.10.1109/ICSM.1992.242525  

Osborne, W. (1990). Software maintenance and computers. Los Alamitos: IEEE 

Computer Society Press. 

O’Rourke, N., Hatcher, L., & Stepanski, E. J. (2005). A step-by-step approach to using 

SAS® for univariate & multivariate statistics (2nd ed.) Cary, NC: SAS publishing 

& Wiley. 

Paulish, D. J., & Carleton, A. D., (1994). Case studies of software-process-improvement 

measurement. Computer Journal, 27(9), 50-57. doi: 10.1109/2.312039 

Paulk, M. (2001). Extreme programming from a CMM perspective. IEEE Software, 8(6),  

19-26. doi: 10.1109/52.965798 

Parikh, G. (1982). The world of software maintenance. Techniques of Program and 

System Maintenance. Cambridge, MA: Winthrop. 



www.manaraa.com

 

 

231

Perepletchikov, M., Ryan, C., & Tari, Z. (2010). The impact of service cohesion on the 

analyzability of service-oriented software. Services Computing, IEEE 

Transactions, 3(2), 89-103. doi: 10.1109/TSC.2010.23 

Pigoski, T. M. (1996). Practical software maintenance: Best practices for managing  

your software investment. New York, NY: Wiley Publication. 

Ping, L. (2010). A quantitative approach to software maintainability prediction. 

Information Technology and Applications (IFITA). International Forum, 1, 105-

108. doi. 10.1109/IFITA.2010.294  

Pressman, R. S. (1994). Software engineering: A practitioner's approach. (6th ed.). New 

York: McGraw-Hill Publishing Co. 

Porter, A. (1997). Fundamental laws and assumptions of software maintenance. 

Empirical Software Engineering, 2(2), 119-131. doi: 10.1023/A:1009793015685 

Ravichandar, R., Arthur, J. D., Bohner, S. A., & Tegarden, D.P. (2008). Improving 

change tolerance through capabilities-based design: An empirical analysis. 

Journal of Software Maintenance and Evolution: Research and Practice, 20(2), 

135-170, doi: 10.1002/smr.367 

Ratzinger, J., Sigmund, T., Vorburger, P., & Gall, H. (2007). Mining software evolution 

to predict refactoring. Proceedings of the First International Symposium on 

Empirical Software Engineering and Measurement, 354-363. doi: 

10.1109/ESEM.2007.9 

 



www.manaraa.com

 

 

232

Riaz, M., Mendes, E., & Tempero, E. (2009). Empirical software engineering and 

measurement. ESEM, 367- 377. doi. 10.1109/ESEM.2009.5314233  

Ruiz, F., Aurora, V., Piattini, M., & Garcia, F.(2004). An ontology for the management 

of software maintenance projects. International Journal of Software Engineering   

 and Knowledge Engineering, 14(3), 323-349. doi: WSPC/117-ijseke 

Rico, D. F. (2008). Effects of Agile methods on website quality for electronic  

commerce. Proceedings of the 41st Hawaii International Conference on System  

Sciences,463-463. Doi: 10.1109/HICSS.2008.137 

Royal Academy of Engineering. (2004). The challenges of complex IT projects. London: 

British Computer Society.  

Rosso, D. C. (2006). Continuous evolution through software architecture evaluation: A  

case study. Journal of Software Maintenance and Evolution: Research and 

Practice, 18, 351-383. doi.10.1002/smr.337 

Saaty, T. L (1980). The analytic hierarchy process, planning, priority setting, resource  

allocation. New York: McGraw-Hill. 

Sindhgatta, R., Narendra, C. N., & Sengupta, B. (2010). Software evolution in  

Agile development: A case study. ACM Journal, 105-114. 

doi:10.1145/1869542.1869560 

Singleton, R. A., & Straits, B. C. (2005). Approaches to social research (4th ed.). New 

York: Oxford University Press. 

 



www.manaraa.com

 

 

233

Singh, Y., & Goel, B. (2007). A step towards software preventive maintenance. SigSoft - 

Software Engineering, 32(4), 10. doi: 10.1145/1281421.1281432 

Siket, I. (2010). Applying software product metrics in software maintenance. Published 

Dissertation, University of Szeged, Szeged, Hungary.  

Schach, S., Jin, B., Wright, D., Heller, G., & Offutt, A. J. (2003). Determining the 

distribution of maintenance categories: Survey versus empirical study. Kluwer’s 

Empirical Software Engineering, 8(4), 351-365. doi: 10.1023/A:1025368318006 

Schneiderwind, N. F. (1987). The state of software maintenance. IEEE Transactions on 

Software Engineering, 13(3), 303-310. doi:10.1109/TSE.1987.233161 

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Upper 

Saddle River, NJ:  Prentice Hall. 

Sneed H. (1995). Planning the reengineering of Legacy systems. IEEE software, 12(1),  

24-34. doi: 10.1109/52.363168 

Sommerville, I. (2000). Software engineering (6th ed.). New York: Addison-Wesley. 

Standish Group International, Inc. (2004). Third quarter research report. West  

Yarmouth, MA: Standish Group. 

Stauss, B. (1993). Service Problem Deployment: Transformation of problem information 

into problem prevention activities. International Journal of Service Industry 

Management, 4(2), 41-62. doi: 10.1108/09564239310037927 

Stevens, J. P. (2009). Applied multivariate statistics for the social sciences (5th ed.). 

Mahwah, NJ: Routledge Academic.  



www.manaraa.com

 

 

234

Swanson, E. B. (1976). The dimensions of maintenance. Proceedings of the 2nd 

international conference on software engineering, 492-497. IEEE Computer 

Society Press. Los Alamitos, CA. 

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.).  

Needham Heights, MA: Allyn and Bacon. 

Tsantalis, N., Chatzigeorgiou, A., & Stephanides, G. (2005). Predicting the probability of 

change in object-oriented systems. IEEE Transactions on Software Engineering, 

31(7). 601-614. doi: 10.1109/TSE.2005.83 

Trochim, W. M. K., & Donnelly, J. P. (2007). Research methods knowledge base. (3rd 

ed.). Mason, OH: Thompson Learning Publications. 

Testa, L. (2009). Growing software: Proven strategies for managing software engineers. 

San Francisco, CA: No Starch Press.  

Tichy, W. F. (2004). Agile development: Evaluation and experience. Software  

Engineering, 692. doi: 10.1109/ICSE.2004.1317492 

Turski, W. M. (1996). Reference model for smooth growth of software systems. IEEE 

Transactions on Software Engineering, 22(8), 99-600. doi: 10.1109/32.536959 

Turski, W. M. (2002). The reference model for smooth growth of software systems 

revisited. Software Engineering, IEEE Transactions, 28(8), 814-815. doi: 

10.1109/TSE.2002.1027802 

Vogt, P. W. (2007). Quantitative research methods for professionals. City: Pearson 

Publications. 



www.manaraa.com

 

 

235

Wiegers, K. E. (2005). Software requirements. (2nd ed.). Redmond: MS Press. 

Wiener-Ehrlich, W. K., Hamrick, J. R., & Rupolo, V. F. (1984). Modeling software 

behavior in terms of a formal life cycle curve: Implications for software 

maintenance. IEEE Transaction Software Engineering, 10(4), 376-383. 

 doi: 10.1109/TSE.1984.5010250 

Yeh, D., & Jeng, J. H. (2002). An empirical study of the influence of departmentalization 

and organizational position on software maintenance. Journal of Software 

Maintenance and Evolution. Research and Practice, 14(1), 65-82. doi: 

10.1002/smr.246 

Yu, L. & Chen, K. (2006). An empirical study of the maintenance effort. Proceedings in 

the 8th International Conference on Software Engineering and Knowledge 

Engineering (SEKE). San Francisco, CA. 242-245, ISBN 1-891706-18-7 

Zhe, M., & Kerong, B. (2010). Research on maintainability evaluation of service-oriented 

software. 4, IEEE Software Journal, 510-512. doi:10.1109/ICCSIT.2010.5563562 

 

 
  



www.manaraa.com

 

 

236

Appendix A: Agile practice areas and underlying practices  

Table A1  

Agile practice areas/Agile 

characteristics 
Key objectives 

Customer team member/participation 

Represent customer group for the functional, business, 

and technical requirements.  Better and timely interaction 

with the development team.  Better synch up & 

alignment with developers and IT operations 

organization. 

User stories 
User requirement that also serves as planning tool to 

schedule the implementation of a requirement 

  
Every user story has priority and cost.  User story can 

evolve and change! 

Short cycles/Iterations 

Delivers the working stories in iterative manner typically 

over 1-2 weeks. Customer agrees to freeze the stories 

being developed in iteration and review the results at the 

end of the iteration cycle. 

  

Team work according to release plan that delivers 

prioritized user stories selected by customer that consists 

of several smaller iterations with agreed order (priority). 

Acceptance tests 
Mechanism to verify the user story is behaving as 

specified by customer. 

  

User story is always associated with one or more 

acceptance test(s) that need to be passed and continue to 

be successful throughout the iteration(s) and release(s). 



www.manaraa.com

 

 

237

 

Table A1 (Continued) 

Agile practice areas/Agile 

characteristics 
Key objectives 

 

Pair programming 
Technique to promote the quality (reduced defect rate) as 

well the knowledge across the development team 

  
Promote cross skill development opportunities among the 

team members. 

Test driven development 

Tests are written before writing code encouraging the 

quality checkpoints on modular level.  Test must pass 

with every change in the code 

  
Technique that helps refactoring and decoupling within 

the code in longer run. 

Collective ownership 
Frequent code check in/check-out with collective 

ownership of the code among the developers 

  

No single authority over code promoting team 

environment and discipline over the code management 

through the development cycle. 

 

Continuous integration/Automated 

Deployments 

System build several times a day with newly integrated 

code. At the end of the integration, all the tests must pass 

and final state of the system is working, promoting 

greater quality checkpoints. 

 



www.manaraa.com

 

 

238

Table A1 (Continued) 

Agile practice areas/Agile 

characteristics 
Key objectives 

 

The planning game 

Discussion that yields clear responsibility and 

understanding on the decisions about functional features 

and required efforts from the development team allowing 

customer and project team to grasp the overall project 

timelines 

  

This planning effort enlists and agrees with number of 

iterations and releases within given resources for the 

project 

Simple Design 
Focus on the design within iteration period with 

simplicity in mind 

  

Code duplication is avoided.  Only justified and needed 

infrastructural components are considered per 

iteration/user story basis, rather than looking for distant 

requirements 

Refactoring 
Continuous exercise to transform the code to simpler, 

cleaner, and scalable state 

  

Refactoring need not wait for release or iteration to end 

but can be done every hour within the code development 

phase to ensure the clean design 

 



www.manaraa.com

 

 

239

Appendix B: AHP Scoring Protocol 

The participant that is also an Agile software development model expert use 
values from 1 to 5 to score the importance of the software source code attributes for 
software maintainability sub-characteristics viz. software analyzability, changeability, 
stability, and testability. 

 
Table B1  

 
AHP Scoring Protocol with explanation  

 
Value For Explanation 

1 Equal importance 

The two system properties contribute equally to 

software maintainability sub-characteristics 

(Software analyzability, changeability, stability, 

and testability). 

2 Moderate importance 
 One system attribute moderately contribute 

than other system attribute. 

3 Strong importance 
One system attribute strongly contribute than 

other attribute. 

4 Very strong importance 
A system attribute is favored very strongly over 

another. 

5 Extreme importance 
A system attribute or property is absolutely 

important than other system attribute. 

 

  



www.manaraa.com

 

 

240

 

Q 
Questions to facilitate pair-wise comparison based on subjective 

assessment 

Score 

(1-5) 

     

  Scoring for software code attribute importance for Analyzability   

Q1 
In your experience, how important is code complexity than code 

coupling when evaluating software analyzability?  2 

Q2 
In your experience, how important is code complexity than code 

duplication when evaluating software analyzability?  2 

Q3 
In your experience, how important is code complexity than unit test 

efforts when evaluating software analyzability?  5 

Q4 
In your experience, how important is code coupling than code 

duplication when evaluating software analyzability?  1 

Q5 
In your experience, how important is code coupling than unit test 

efforts when evaluating software analyzability?  5 

Q6 
In your experience, how important is code duplication than unit test 

efforts when evaluating software analyzability?  5 

      

  Scoring for software code attribute importance for Changeability   

Q7 
In your experience, how important is code complexity than code 

coupling when evaluating software changeability?  3 



www.manaraa.com

 

 

241

Q8 
In your experience, how important is code complexity than code 

duplication when evaluating software changeability?  3 

Q9 
In your experience, how important is code complexity than unit test 

efforts when evaluating software changeability?  1 

 (Continued table)  

Q10 
In your experience, how important is code coupling than code 

duplication when evaluating software changeability?  1 

Q11 
In your experience, how important is code coupling than unit test 

efforts when evaluating software changeability?  1 

Q12 
In your experience, how important is code duplication than unit test 

efforts when evaluating software changeability?  1 

      

  Scoring for software code attribute importance for Stability   

Q13 
In your experience, how important is code complexity than code 

coupling when evaluating software stability?  3 

Q14 
In your experience, how important is code complexity than code 

duplication when evaluating software stability?  3 

Q15 
In your experience, how important is code complexity than unit test 

efforts when evaluating software stability?  1 

Q16 
In your experience, how important is code coupling than code 

duplication when evaluating software stability?  1 



www.manaraa.com

 

 

242

Q17 
In your experience, how important is code coupling than unit test 

efforts when evaluating software stability?  4 

Q18 
In your experience, how important is code duplication than unit test 

efforts when evaluating software stability? 4  

  Scoring for software code attribute importance for Testability   

Q19 
In your experience, how important is code complexity than code 

coupling when evaluating software testability?  2 

Q20 
In your experience, how important is code complexity than code 

duplication when evaluating software testability?  1 

Q21 
In your experience, how important is code complexity than unit test 

efforts when evaluating software testability?  5 

Q22 
In your experience, how important is code coupling than code 

duplication when evaluating software testability?  2 

Q23 
In your experience, how important is code coupling than unit test 

efforts when evaluating software testability?  4 

Q24 
In your experience, how important is code duplication than unit test 

efforts when evaluating software testability?  4 

 

 

 

 



www.manaraa.com

 

 

243

Additional Information to Aid scoring 
  

(Maintainability Sub-Characteristics definitions and Software attribute measures) 
 

Analyzability: It is a software capability to allow identification for parts that should be 

modified. ISO 9126 defines it as attributes of software that bear on the effort needed for 

diagnosis of deficiencies or causes of failures, or for identification of parts to be 

modified. 

 

Changeability: It is a software capability to enable a specified modification to software 

system to be implemented. ISO 9126 defines it as attributes of software that bear on the 

effort needed for modification, fault removal or for environmental change. 

 

Stability: It is a capability of the software product to avoid unexpected effects from 

modifications of the software. ISO 9126 defines it as attributes of software that bear on 

the risk of unexpected effect of modifications. 

 

Testability: It is a capability of the software product to enable modified software to be 

validated. ISO 9126 defines it as attributes of software that bear on the effort needed for 

validating or testing the modified software. 

 
  



www.manaraa.com

 

 

244

Table B2 
 
Software Properties or Source Code Attribute with Applicable Measures 
Attribute Operationalization 

Unit Size Number of lines of code/statements in a method 

Complexity 

CC (McCabe Metric) = number of linearly independent 

paths through a source code (method/class) 

Coupling 

Count of the number of classes to which a class is coupled 

(CBO) 

Duplication 

The % of all code that occurs more than once in equal code 

blocks of at least 6 lines 

Unit 

Testing 

Percent of  Test/code coverage and count of Assert within 

class files 

 
  



www.manaraa.com

 

 

245

Appendix C: AHP Pair-Wise Comparison & Weight Tabulation 

Table C1 

Pair-wise Comparison with Respect to Analyzability Sub-Variable Yielding the Weight 

for Complexity, Coupling, Duplication, and Unit Test Effort. 

Analyzability Complexity Coupling Duplication 
Unit Test 

Effort 

Complexity 1    

Coupling  1   

Duplication   1  

Unit Test Effort       1 

Normalized 

Eigenvalues 

WAHP-

Complexity 

For 

Analyzability 

WAHP-

Coupling For 

Analyzability 

WAHP-

Duplication For 

Analyzability 

WAHP-

UnitTestEfforts For 

Analyzability 

  

  



www.manaraa.com

 

 

246

Table C2 

Pair-Wise Comparison with Respect to Changeability Sub-Variable Yielding the Weight 

for Complexity, Coupling, Duplication, and Unit Test Effort 

Changeability Complexity Coupling Duplication 
Unit Test 

Effort 

Complexity 1    

Coupling  1   

Duplication   1  

Unit Test Effort       1 

Normalized 

Eigenvalues 

WAHP-

Complexity 

For 

Changeability 

WAHP-

Coupling For 

Changeability 

WAHP-

Duplication For 

Changeability 

WAHP-

UnitTestEfforts For 

Changeability 

 

  



www.manaraa.com

 

 

247

Table C3 

Pair-Wise Comparison with Respect to Stability Sub-Variable Yielding the Weight for 

Complexity, Coupling, Duplication, and Unit Test Effort 

Stability Complexity Coupling Duplication 
Unit Test 

Effort 

Complexity 1    

Coupling  1   

Duplication   1  

Unit Test Effort       1 

Normalized 

Eigenvalues 

WAHP-

Complexity For 

Stability 

WAHP-

Coupling For 

Stability 

WAHP-

Duplication For 

Stability 

WAHP-

UnitTestEfforts For 

Stability 

  

  



www.manaraa.com

 

 

248

Table C4 

Pair-Wise Comparison with Respect to Testability Sub-Variable Yielding the Weight for 

Complexity, Coupling, Duplication, and Unit Test Effort  

Testability Complexity Coupling Duplication 
Unit Test 

Effort 

Complexity 1    

Coupling  1   

Duplication   1  

Unit Test Effort       1 

Normalized 

Eigenvalues 

WAHP-

Complexity For 

Testability 

WAHP-

Coupling For 

Testability 

WAHP-

Duplication For 

Testability 

WAHP-

UnitTestEfforts For 

Testability 

 

  



www.manaraa.com

 

 

249

Table C5 

Final Source Code Property Weight Based on Above Pair-Comparison Tables  

Source Code Property 

Weight 
Analyzability Changeability Stability Testability 

Complexity 
WAHP-Complexity 

For Analyzability 

WAHP-Complexity 

For Changeability 

WAHP-

Complexity For 

Stability 

WAHP-

Complexity For 

Testability 

Coupling 
WAHP-Coupling 

For Analyzability 

WAHP-Coupling 

For Changeability 

WAHP-Coupling 

For Stability 

WAHP-Coupling 

For Testability 

Duplication 
WAHP-Duplication 

For Analyzability 

WAHP-Duplication 

For Changeability 

WAHP-

Duplication For 

Stability 

WAHP-

Duplication For 

Testability 

Unit Test Effort 

WAHP-

UnitTestEfforts For 

Analyzability 

WAHP-

UnitTestEfforts For 

Changeability 

WAHP-

UnitTestEfforts  

For Stability 

WAHP-

UnitTestEfforts 

For Testability 

 

  



www.manaraa.com

 

 

250

Table C6 

Tools Used for Metrics Measurement 

Purpose Tool Name URL 

Source 

Code 

manageme

nt and 

download 

TortoiseSVN 

Ver. 1.6.2.16344 
http://tortoisesvn.net (Open source) 

Unit Size 

measureme

nt 

Source Monitor 

Ver. 2.6.8.123 
http://campwoodsw.com (Student License)  

Source 

code 

metrics 

collection 

(CC, CBO, 

Assert). 

Understand Ver. 

2.6 
http://www.scitools.com (Student License) 

Test 

Coverage 

and 

Continuous 

Integration 

log. 

CruiseControl 

1.3.0.2918 

http://confluence.public.thoughtworks.org/displ

ay/CCNET/ 

(Open Source) 

 

Code 

cloning 
Solid SDD 1.3 www.solidsourceit.com 

 

 



www.manaraa.com

 

 

251

 

Appendix D: Raw Data Collection Template shown for 20 iterations with Actual Measure  

Table D1 

Software Attribute, Their Measure, and the Actual Data Collection Template Sheet 

Measur

e 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Iteration 

(0 < 

McCab

e CC 

<10) 

1 /(11 < 

McCab

e CC < 

20) 

1 /(21 < 

McCabe 

CC < 50 

) 

1/ Unit 

Size 

0 < 

CBO < 

6 

7 < 

CB0 < 

14 

1/ (15 < 

CBO < 

50) 

Assert/Clas

s 

Test 

Coverag

e 

1/Clonin

g  

I1           

I2           

I3           

I4           

I5           

I6           

I7           

I8           

I9           

I10           

I11           

I12           

I13           

I14           

I15           

I16           

I17           

I18           

I19           

I20           



www.manaraa.com

 

 

252

 

Note that, M2, M3, M4,and M7 are negatively correlated to maintainability 

characteristics as discussed in literature. In other words, increase in complexity, unit size, 

coupling, and duplication reduces the maintainability and its sub-characteristics. Note 

that programmer attempts to lower code complexity, lower the coupling between objects 

reduce the method size, and the code duplication in the program to improve the 

maintainability traits during the software development iterations.  

 

  



www.manaraa.com

 

Appendix E: NIH Certificate of Completion

 

 

 

Certificate of Completion

The National Institutes of Health (NIH) Office of Extramural Research 

certifies that Ajay Gawali

training course “Protecting Human Research Participants”.

Date of completion: 09/14/2011 

Certification Number: 757322 

 

 

 

 

 

 

 

 

 

 

 

Appendix E: NIH Certificate of Completion 

Certificate of Completion 

The National Institutes of Health (NIH) Office of Extramural Research 

Ajay Gawali successfully completed the NIH Web-based 

training course “Protecting Human Research Participants”. 

Date of completion: 09/14/2011  

Certification Number: 757322  

 253

The National Institutes of Health (NIH) Office of Extramural Research 

based 



www.manaraa.com

 

 

254

Appendix F: Final Calculation of AHP Weights for analyzability characteristics as an 

example  

Weights for source code attributes for analyzability characteristic 

  
Complexity Coupling Cloning 

Unit Test 

Efforts 
Weights 

Complexity 1.00 2.00 2.00 5.00 0.4299 

Coupling 0.50 1.00 1.00 5.00 0.2540 

Cloning 0.50 1.00 1.00 5.00 0.2540 

Unit Test 

Effort 0.20 0.20 0.20 1.00 0.0622 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

255

Appendix G: Raw data for first 5 iterations shown as example   

Measure M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Iteration 

(0 < 

McCabe 

CC 

<10) 

1 /(11 < 

McCabe 

CC < 

20) 

1 /(21 < 

McCabe 

CC < 

50 ) 

1/ Unit 

Size 

0 < 

CBO < 

6 

7 < 

CB0 < 

14 

1/ (15 < 

CBO < 

50) 

Assert/Class 
Test 

Coverage 
1/Cloning  

I1 0.71 7.12 9.58 0.31 0.61 0.25 7.10 5.12 0.2774 10.267 

I2 0.71 7.07 9.74 0.31 0.61 0.25 7.50 5.45 0.2898 10.799 

I3 0.71 7.08 9.79 0.31 0.61 0.25 7.55 5.48 0.2908 10.811 

I4 0.72 7.12 9.90 0.31 0.62 0.26 8.06 5.56 0.2937 11.325 

I5 0.72 7.04 10.16 0.31 0.62 0.26 8.58 5.79 0.295 11.351 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

256

Appendix H:  Nonstandardized Data for All Variables 

 

 

 

 

 

 

 

 

  

 
X1 X2 X3 Y1 Y2 Y3 Y4 Y 

 Iteratio

n 

Test Driven 

Development/T

DD 

Refactorin

g (REFR) 

Continuo

us 

Integratio

n (CI) 

Analyzabili

ty 

Changeabili

ty 
Stability Testability 

Maintainabili

ty 

1 0.1666 

6.7842605

16 20 

12.4977603

5 

11.4259738

3 

8.4947333

45 

7.7819155

77 472.9946676 

2 0.1741 

6.8775790

92 45 

12.8002484

7 

11.7083064

2 

8.8401817

61 

8.1312007

38 487.4023402 

3 0.1766 

6.9204152

25 57 

12.8505386

2 

11.7564782

1 

8.8773041

31 

8.1663673

66 489.3984575 

4 0.1773 

6.9541029

21 19 13.1777447 

12.0106443

1 

9.1324173

03 

8.3849276

19 501.6762613 

5 0.1819 

7.0871722

18 21 

13.4065827

2 

12.2293039

8 

9.3658665

94 

8.6142138

36 512.038094 



www.manaraa.com

 

 

257

Appendix I: Standardized Z Scores for 5 iterations for Independent (X) Variables & Final 

Y Values, and weighted values as an example 

Software Maintainability Computation Table 

 

Example of Weighted software analyzability 

Analyzability 

(Y1) 

M = Sum of T 

/ 61 
Occurrence 

T = Y1 X 

Occurrence 

Weighted 

Y1 = Y1 X 

M 

12.50 13.71 1 12.49776035 171.3879341 

12.80 13.71 1 12.80024847 175.5361024 

 
 
Example of Weighted software changeability 

Changeability 

(Y2) 

M = Sum of T 

/ 61 
Occurrence 

T = Y2 X 

Occurrence 

Weighted Y2 

= Y2 X M 

11.43 12.67 1 11.4259738 144.7285024 

11.71 12.67 1 11.7083064 148.3047028 

Iteration 

TDD 

(X1) 

REFR 

(X2) CI (X3) 

Analyzability 

(Y1) 

Changeability 

(Y2) 

Stability 

(Y3) 

Testability 

(Y4) 

Maintainability 

(Y) 

1 -1.86 -1.44 -0.67 12.5 11.43 8.49 7.78 472.99 

2 -1.72 -1.12 0.61 12.8 11.71 8.84 8.13 487.4 

3 -1.67 -0.98 1.22 12.85 11.76 8.88 8.17 489.4 

4 -1.65 -0.87 -0.72 13.18 12.01 9.13 8.38 501.68 

5 -1.57 -0.42 -0.62 13.41 12.23 9.37 8.61 512.04 



www.manaraa.com

 

 

258

 

Example of Weighted software stability 

Software 

Stability (Y3) 

M = Sum of T 

/ 61 
Occurrence 

T = Y3 X 

Occurrence 

Weighted 

Y3 = Y3 X 

M 

8.49 9.992803279 1 8.49473334 84.88619922 

8.84 9.992803279 1 8.84018176 88.33819728 

 
Example of Weighted software testability (Y4) 

Software 

Testability (Y4) 

 M = Sum of T 

/ 61 
Occurrence 

T = Y4 X 

Occurrence 

Weighted 

Y4 = Y4 X 

M 

7.78 9.25 1 7.781915577 71.99203187 

8.13 9.25 1 8.131200738 75.22333761 

 
Example of Weighted Y or final weighted maintainability 

Weighted   

Analyzability 

WY1 

Weighted 

Changeability 

WY2 

Weighted 

Stability  

WY3  

Weighted 

Testability  

WY4 

Weighted 

Maintainability 

(Y = (WY1+ 

WY2+ WY3+ WY4) 

171.3879341 144.7285024 84.8861992 71.9920319 472.9946676 

175.5361024 148.3047028 88.3381973 75.2233376 487.4023402 



www.manaraa.com

 

 

259

 
Appendix J: Descriptive Statistics Summary 

Sample Descriptive Statistics for selected variables 
 

 
N 

Minimu
m 

Maximu
m Mean 

Std. 
Deviation 

Test_driven_Developm
ent_TDD 

61 .17 .35 .2637 .05222 

      
      
Standard_TDD 61 -1.86 1.65 .0000 1.00000 
      
      
Analyzability 61 12.50 14.56 13.7144 .39124 
      
      
      
Maintainability 61 472.99 563.28 537.8634 20.93317 
Valid N (listwise) 61     

 

  



www.manaraa.com

 

 

260

Correlations 
 

 Standard_TD
D 

Standard_RE
FR 

Standard_C
I 

Analyzabili
ty 

Standard
_TDD 

Pearson 
Correlation 

1 -.116 .262* .411** 

Sig. (2-tailed)  .373 .042 .001 

N 61 61 61 61 
Standard
_REFR 

Pearson 
Correlation 

-.116 1 -.347** .703** 

Sig. (2-tailed) .373  .006 .000 

N 61 61 61 61 
Standard
_CI 

Pearson 
Correlation 

.262* -.347** 1 -.098 

Sig. (2-tailed) .042 .006  .454 

N 61 61 61 61 

Analyza
bility 

Pearson 
Correlation 

.411** .703** -.098 1 

Sig. (2-tailed) .001 .000 .454  

N 61 61 61 61 
Changea
bility 

Pearson 
Correlation 

.778** .420** .057 .885** 

Sig. (2-tailed) .000 .001 .662 .000 

N 61 61 61 61 

Stability Pearson 
Correlation 

.811** .276* .104 .798** 

Sig. (2-tailed) .000 .031 .423 .000 
N 61 61 61 61 

Testabili
ty 

Pearson 
Correlation 

.877** .158 .144 .701** 

Sig. (2-tailed) .000 .223 .267 .000 

N 61 61 61 61 



www.manaraa.com

 

 

261

Maintain
ability 

Pearson 
Correlation 

.759** .411** .050 .888** 

Sig. (2-tailed) .000 .001 .705 .000 

N 61 61 61 61 
 

Additional sample sequence charts for independent and dependent variable 

 

 

 

 



www.manaraa.com

 

 

262

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

263

Appendix K: Regression Model example for software analyzability and Charts 

 
Model Summaryb 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .861a .741 .728 .20417 

a. Predictors: (Constant), Standard_CI, Standard_TDD, 
Standard_REFR 
b. Dependent Variable: Analyzability 

 
ANOVAb 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 6.808 3 2.269 54.440 .000a 

Residual 2.376 57 .042   

Total 9.184 60    

a. Predictors: (Constant), Standard_CI, Standard_TDD, Standard_REFR 
b. Dependent Variable: Analyzability 

 
Coefficientsa 

Model 

Unstandardized 
Coefficients 

B Std. Error 

1 (Constant) 13.714 .026 

Standard_TDD .191 .027 

Standard_REF
R 

.303 .028 

Standard_CI .017 .029 
 

  



www.manaraa.com

 

 

264

Coefficientsa 

Model 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

Beta Tolerance VIF 

1 (Constant)  524.628 .000   

Standard_TDD .489 7.006 .000 .931 1.074 

Standard_REF
R 

.775 10.781 .000 .879 1.138 

Standard_CI .043 .585 .561 .830 1.205 
 

 
Coefficient Correlationsa 

Model 
Standard_C

I 
Standard_TD

D 
Standard_RE

FR 

1 Correlations Standard_CI 1.000 -.238 .330 

Standard_TDD -.238 1.000 .028 

Standard_REF
R 

.330 .028 1.000 

Covariances Standard_CI .001 .000 .000 

Standard_TDD .000 .001 2.148E-5 

Standard_REF
R 

.000 2.148E-5 .001 

a. Dependent Variable: Analyzability 

 
Collinearity Diagnosticsa 

Model Dimension 
Eigenvalu

e 
Condition 

Index 

1 1 1.495 1.000 

2 1.000 1.223 

3 .889 1.297 

4 .616 1.558 
 



www.manaraa.com

 

 

265

Collinearity Diagnosticsa 

Model Dimension 

Variance Proportions 

(Constant) 
Standard_TD

D 
Standard_RE

FR 
Standard_C

I 

1 1 .00 .15 .19 .24 

2 1.00 .00 .00 .00 

3 .00 .68 .34 .01 

4 .00 .17 .47 .75 

 
Residuals Statisticsa 

 Minimu
m 

Maximu
m Mean 

Std. 
Deviation N 

Predicted Value 12.9124 14.3713 13.7144 .33685 61 
Residual -.41460 .44492 .00000 .19900 61 
Std. Predicted 
Value 

-2.381 1.950 .000 1.000 61 

Std. Residual -2.031 2.179 .000 .975 61 

a. Dependent Variable: Analyzability 
 

  



www.manaraa.com

 

 

266

Residual Chart and scatter plot for software analyzability (SA) or Y1 variable 

 

 

 

 

 



www.manaraa.com

 

 

267

Appendix L: Adjusted Regression Model without CI variable 

Analysis of Variance for software maintainability (SM) 

Adjusted model without CI(X3)  variable included in the regression model  

Analysis of Variance 

Source DF 

Sum of Mean 

F value Pr > F squares square 

Model 2 21768 10884 139.51 <.0001 

Error 58 4525 78     

  R-square 82.8%     

  Adj.  R-sq 82.2%     

 

Predictor Coef SE Coef T P VIF 

Constant 537.865 1.131 475.61 0.000   

TDD (X1) 17.089 1.147 14.90 0.000 1.014 

REFR (X2) 10.585 1.148 9.22 0.000 1.014 

 

The regression equation is: SM (Y) = 538 + 17.1 TDD (X1) + 10.6 REFR (X2) 
 

 

 

 

 

 

 



www.manaraa.com

 

 

268

Appendix M: Curriculum Vitae  

Ajay R Gawali, Arizona USA 
ajay.gawali@waldenu.edu 

Education: 
Doctor of Philosophy – Applied Management & Decision Sciences       2012 
Walden University, Minneapolis, Minnesota 
 
Master of Science – Physics            1991 
Pune University, Maharashtra, India                                                                                         
 
Bachelor of Science – Electronics           1989 
Pune University, Maharashtra, India    

Certifications: CISA, MCITP, MCDBA 

Professional Affiliations: 

Professional Member, ISACA (Information Systems Audit & Control Association) 
Member, IEEE (Institute of Electrical & Electronics Engineers) 
Member, ACM (Association for Computing Machinery) 
Member, ASQ (American Society for Quality) 
Lead Assessor for ISO 9000/9001 Quality Management System 

Honors and Awards: 

Division Recognition Awards: Intel’s Information Technology, Facilities & Materials 
Excellence Award: Intel’s Corporate Services Finance 

Research support: 
Intel Corporation, Arizona.  
Current Research: “Impact of Agile Software Development Model on Software 
Maintainability and its sub-characteristics” 

Relevant Professional Experience: 

Sr. System Analyst        2000 - Present 
IT Supply Network Capability, Production Services, Intel Corporation, Arizona, US 
                                 
Lead and represent as a key strategic operation resource on several application 
developments, integration, & upgrade projects within supply network capability 
organization in IT. Integrate and manage SAP/Business Objects Reporting application 
environment for BI (Business Intelligence) platform, MS SQL (2005/2008) Clusters, IIS 
6/7 web farms, DFS environment, Agile deployment toolsets and infrastructure. Lead the 
technical integration, architecture review, and deployment of IP compliance solutions, 
streamline and maintain the technology, platform, & application life cycle, and serve as 
4th level escalation contact for tactical operation team. Work as strategic operation analyst 



www.manaraa.com

 

 

269

on several cross functional teams, projects, and IT initiatives critical for Intel’s business. 
Delivered several internal training sessions to improve efficacy of strategic and tactical 
organizations within production service team that is driven by ITIL service framework. 
 
Sr. System Administrator           2000 - 2003   
Intel Online Services, Intel Japan, Tokyo  
 
Integrated, deployed, and sustained several MS AD servers, Wins, DHCP, DFS servers, 
MS SQL DB Clusters with IIS 5 web farms, administered & supported several data 
center operation management tools for managed and hosting services for business critical 
application infrastructure, consulted, designed, and integrated technical solutions for 
highly available, secured, and reliable application platform for 24 X7 data center 
operational needs, and served as 3rd level escalation contact for global tactical technical 
team. Led and delivered several technical training sessions for the operation as well 
technical project delivery team to improve its strategic capability. 
 
System Administrator            1999 – 2000 
Interlogic K.K., Tokyo, Japan       
 
Deployed and upgraded global application toolsets for Goldman Sachs, Japan for 
business critical applications. Integrated and administered MS NT, SQL Server, and 
Exchange server infrastructure and applications. Designed and developed IT security, 
administration policies and procedures. Led several internal audit and training sessions. 
   
System Administrator            1997 - 1998 
Electronics Data System, Kobe, Japan  
 
Administered MS Windows NT, Lotus Notes, Novell Netware 30 + servers supporting 
3000 + user base for P&G Asia Pacific Head office. Managed and supported Arc Serve 
backup software system. Technical lead for Novell Servers located across P&G’s Japan-
wide factory locations. Upgraded and deployed enterprise workstation platform for 
1500+ user base.   
 
System Engineer            1992 - 1997 
Author Systems, India         
 
Integrated, administered and supported Novell Netware 2.2, 3.12, 4.X servers, supported 
wide range of IT customer base including training and manufacturing. Integrated and 
supported several applications and Novell Netware clients. Managed vendor, contract & 
license support. Administered and supported training organizational user base, designed 
several training courses for IT training division. Served as Novell expert on several 
consulting projects for industrial and educational institutions. 


